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We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain

branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of

polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out the

possibility of the overshoot being an experimental artifact by confirming the existence of steady flow after

a maximum in the ratio of stress to strain rate versus strain under both constant stress and constant strain-

rate kinematics. This observation indicates the omission of important physics from current models for

these industrially important materials, whose processing properties depend on extreme molecular

extension.
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Introduction.—Predicting the viscoelastic properties of
branched polymer melts from their molecular architecture
remains one of the great challenges in polymer physics
[1–3]. One outstanding problem is the lack of consensus of
the evolution of stress in the start-up of constant strain-rate
extensional flow. While one laboratory [4] has reported a
maximum in stress followed by a steady value, other
laboratories have legitimately questioned the maximum
[5–7] and even challenged the existence of steady exten-
sional flow [8,9]. The molecular origin of a stress maxi-
mum is unclear inasmuch as nonlinear models [10]
specifically designed for branched polymers show a mono-
tonic increase of stress in constant strain-rate extension.

Here, we report observations of extensional flow not
with a constant strain rate but with a constant stress (creep).
In addition to probing the transient behavior, the creep
protocol also allows the measurement of the ultimate
steady extensional viscosity. The uniqueness of the steady
extensional viscosity independent of the start-up protocol
is apparently not a settled matter as evidenced by the
reporting of two viscosities at the same steady strain rate
[11,12]. The experiments are compared to the small strain
predictions [13,14] to illustrate the departure from linear
material behavior.

A major challenge in extensional rheometry is that large
deformations are needed to approach a steady flow state.
Deformations are measured in units of Hencky strain
defined as � ¼ ln�, where � ¼ L=L0 is the stretch ratio,
L0 is the initial length, and L is the final length of a given
cylindrical shape. The strain rate _� is the time derivative of
the Hencky strain. In the classical controlled deformation
extensional experiment, a constant _� is imposed and the
stress is monitored as a function of time. Typically, Hencky
strains larger than four are required to establish a steady
tensile stress. However, in many extensional flow devices,
sample inhomogeneitywill prevent control of the kinematics

at approximately the same Hencky strain, such that a steady
flow cannot be observed.
Filament stretching rheometry.—The only extensional

rheometer that can achieve absolute in situ control of
the kinematics is the filament stretching rheometer (FSR)
[15,16]. Traditionally, a FSR is operated in controlled
deformation mode. In this work we have adapted the
FSR to operate in controlled stress (creep) mode. While
extensional creep testing has been performed with other
devices [11,12,17,18], this represents the first adaptation of
a FSR device to operate in controlled stress mode. We use a
low density polyethylene (LDPE, Lupolen 3020D) melt as
model material. LDPE is a highly branched polymer with
irregular long-chain branching [19,20]. An example of a
stretched filament is shown in Fig. 1. Examples of imposed
stress as a function of time are shown in Fig. 2.
Small deformations.—In the limit of small strain all

nonlinear constitutive equations reduce to the framework
of linear viscoelasticity (LVE). A frequently used LVE
model is the multimode Maxwell model [21] whereby
the shear stress � is a superposition of individual modes
so that � ¼ P

�i. The individual modes are given by

FIG. 1. Polyethylene sample before (bottom, diameter 9 mm)
and after (top) stretching. The midplane deformation corre-
sponds to a Hencky strain of 6.7. The Hencky strain in the
filament midplane is measured on-line by a laser micrometer
during the experiment.
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�i þ �i
d�i

dt
¼ gi�i _�; i ¼ 1; 2; . . . ; n; (1)

where _�ðtÞ is the shear rate. The moduli gi and relaxation
times �i form a set of 2n material parameters that com-
pletely characterize the LVE properties. Numerical values
for the model melt [22] are reproduced in Table I.

In creep a total stress �0 is imposed at time t ¼ 0 such
that Eq. (1) is augmented by the constraint,

Xn

i¼1

�iðtÞ ¼ �0: (2)

The total shear deformation �ðtÞ ¼ R
t
0 _�ðt0Þdt0 is moni-

tored as a function of time. The creep compliance JðtÞ ¼
�ðtÞ=�0 is then given by

JðtÞ ¼ J0 þ t

�0

þ Xn�1

k¼1

jk½1� expð�t=�kÞ�: (3)

The parameters in the compliance expression are the
instantaneous compliance J0 ¼ 1=

P
gi, the zero shear-

rate viscosity �0 ¼ P
gi�i, the (n� 1) retardation times

�k, and the (n� 1) compliance coefficients jk. The (�k, jk)
are determined from Eqs. (A3) and (A4) derived in
the Appendix. Numerical values are given in Table I.
The retardation times are located in the intervals be-
tween the n relaxation times so that �i 2 ½�i; �iþ1�,

i ¼ 1; . . . ; n� 1. In particular, the longest retardation
time (�7) is less than half the value of the longest relaxation
time (�8) such that the transition to steady flow is faster in
creep than in prescribed deformation. Hence, if the interest

TABLE I. Parameters for LDPE melt (130 �C).

i gi (Pa) �i (s) ji (Pa
�1) �i (s)

1 2:245� 105 3:954� 10�3 2:310� 10�6 8:292� 10�3

2 7:120� 104 2:965� 10�2 2:932� 10�6 4:888� 10�2

3 4:515� 104 1:393� 10�1 5:215� 10�6 2:405� 10�1

4 2:789� 104 6:377� 10�1 9:893� 10�6 1:178� 100

5 1:628� 104 2:893� 100 2:059� 10�5 5:930� 100

6 8:451� 103 1:322� 101 5:180� 10�5 3:222� 101

7 4:039� 103 6:880� 102 4:599� 10�4 4:331� 102

8 7:132� 102 1:066� 103 � � � � � �

FIG. 3 (color online). Top: Extensional compliance �J versus
time at five applied stresses. Bottom: Comparison of shear
compliance (top curves) and extensional compliance versus time
for five applied stresses (log-log scales). The solid lines in both
graphs correspond to the predicted LVE compliance from Eq. (3).
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FIG. 2 (color online). Stress in the filament midplane mea-
sured as a function of time for five predefined stress levels.
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FIG. 4 (color online). Hencky strain rate _� as a function of
Hencky strain � for constant applied �0 equal to 40 kPa (dia-
monds, bottom) and 150 kPa (circles, top). For �0 larger than
approximately 80 kPa, the strain rate goes through a minimum
before reaching a steady state value.

PRL 110, 168301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

19 APRIL 2013

168301-2



is only in the steady flow, creep is the more effective path
to reach that state [11].

The extensional compliance �JðtÞ ¼ �ðtÞ=�0 by defini-
tion is a factor of 3 smaller than the shear compliance JðtÞ.

Creep measurements.—The extensional compliance �JðtÞ
measured in the FSR is compared with the LVE prediction
from Eq. (3) in Fig. 3. Departure from the full line is a
manifestation of the nonlinear mechanical properties of
the melt. A good agreement with LVE is obtained for an
imposed stress �0 up to 1000 Pa, but for larger imposed
stresses, the melt is less compliant than that predicted by
LVE. This is indeed to be expected as it corresponds to
extensional strain hardening observed in controlled defor-
mation experiments [4]. In Fig. 3 (bottom), we compare
the extensional compliance measured in the FSR with
the shear compliance measured in an ARES-G2. Also in
shear, we observe a deviation from the LVE at stresses
above 1000 Pa, but the material becomes more compliant
than predicted from LVE. This behavior corresponds to
the shear thinning typically encountered in the start-up of
steady shear flow. The deviation at times less than 10 s
may be due to limitations in the dynamic control of the
shear rheometer.

In creep, the ultimate steady extensional flow is charac-
terized by a constant slope of the compliance or equiva-
lently a constant value of _� such as in the case for
�0 ¼ 40 kPa in Fig. 4. At stresses above approximately
80 kPa, we observe an inflection point in the compliance
corresponding to a minimum in the slope before a steady
flow is established. The phenomenon is illustrated in Fig. 4
for �0 ¼ 150 kPa with a minimum occurring at approxi-
mately � ¼ 3. The minimum in Fig. 4 corresponds closely
to the maximum in stress observed in controlled deforma-
tion experiments previously reported in Ref. [4]. This is

illustrated further in Fig. 5, where the ratio of �= _� is
plotted as a function of Hencky strain for the two exten-
sional rheometry protocols: constant strain rate [ _� constant
and � ¼ �ðtÞ] and constant stress [� ¼ �0 and _� ¼ _�ðtÞ].
While there is no a priori reason to expect the two ratios to
be the same, the similarity between the paths could indicate
that the molecular mechanism behind the stress maximum
is also behind the inflection point in the compliance [23].
Another important observation from Fig. 5 is that both

protocols eventually approach constant values of �= _�
lasting approximately 1–2 Hencky strain units before the
measurements are terminated due to insufficient resolution.
The steady flow state after the maximum can only be
reached with an active control on the FSR. The steady
ratios are identified as the extensional viscosity at the
given stretch rates [23].
In Fig. 6, we compare our measurements of steady

extensional viscosity obtained in creep with values obtained
in controlled deformation [4].Within experimental accuracy
the two protocols give the same extensional viscosity.
The extensional viscosity exhibits a maximum and an ulti-
mate power-law behavior with the viscosity scaling approxi-
mately as _��0:5 over almost two decades in _�.
Conclusions.—The experimental findings support the

existence of a stress maximum in fast stretching of
branched polymer melts. The stress scaling at steady state
after the maximum suggests that the maximum marks a
transition to a flow state in which branched polymers
behave as linear polymers. Indeed, the current scenario
for relaxation in branched melts in the LVE regime [1–3]
considers a hierarchy of relaxation (from outside to inside)
and an effective conversion of a branched chain into a linear
chain. If we assume the same conversion in the nonlinear
regime, the _��0:5 decrease of the viscosity corresponds to
the same power-law behavior found for linear melts [24].
The work was supported by The Danish Council for
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FIG. 5 (color online). �= _� as a function of Hencky strain � for
constant stress (closed symbols) and constant strain rate (open
symbols) experiments. The constant stress experiments corre-
spond to (filled squares) 80, (filled circles) 100, and (filled
small diamonds) 200 kPa. The constant strain-rate experi-
ments correspond to (squares) 0.01, (circles) 0.03, and (big
diamonds) 0:1 s�1.
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FIG. 6 (color online). Steady viscosity as a function of Hencky
strain rate _� for constant stress (closed symbols) and constant
strain-rate (open symbols) experiments [4]. The dashed line
represents the zero shear rate viscosity determined from the LVE.
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Appendix.—Initial conditions for Eq. (1) become

�ið0Þ ¼ gi
G0

�0; (A1)

where G0 ¼ P
igi. Equations (1), (2), and (A1) are con-

veniently solved by Laplace transformation. The solution
for YðsÞ ¼ R1

0 _�ðtÞ expð�stÞdt becomes

YðsÞ ¼ �0

G0

P
i½gi=ð1þ s�iÞ�

s
P

i½gi�i=ð1þ s�iÞ� : (A2)

The inverse transformation is performed by standard meth-
ods to yield the expression in Eq. (3). The retardation times
are given as �k ¼ �1=sk, where the sk are the zeros of

SðsÞ ¼ X

i

gi�i
1þ s�i

: (A3)

The compliance coefficients are given after some simplifi-
cation as

jk ¼ �2
kP

i½gi�2i =ð1þ sk�iÞ2�
: (A4)

The same result was obtained by Sips [13] but by a differ-
ent procedure.
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