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An ab initio method is presented to calculate shallow impurity levels in bulk semiconductors. This

method combines the GW calculation for the treatment of the central-cell potential with a potential

patching method for large systems (with 64 000 atoms) to describe the impurity state wave functions. The

calculated acceptor levels in Si, GaAs, and an isovalent bound state of GaP are in excellent agreement with

experiments with a root-mean-square error of 8.4 meV.
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Semiconductors are useful because their electrical prop-
erties can be controlled by intentional doping. While
there are deep impurity levels in semiconductors, it is the
shallow ones that are most useful for making them n type
or p type [1] and are also responsible for the rich fine
optical spectroscopy that often eludes explanations [2,3].
Presently, there are ways to calculate deep level energies
based on ab initio total energy calculations with an
accuracy of about 0.2 eV [4–8]. Unfortunately, that is not
adequate for shallow impurities because their binding
energies are smaller than this threshold. Besides, calculat-
ing shallow impurities by such methods would require the
total energy calculations of supercells with tens of thou-
sands of atoms [9], which is beyond the current capability.
There are hydrogen model treatments of shallow donor
and acceptor levels, with either simple effective mass or
the k � p method [10,11]. The resulting binding energies
for such methods are independent of the chemistry of the
impurity element, but, in reality, the impurity level changes
dramatically depending on the impurity element (e.g., from
45.8 meV for Si:B to 247.7 meV for Si:Tl) [12]. This
chemical dependence is called the central-cell potential
correction, and it has been intensely studied in the 1970s
and 1980s [13]. In the simplest picture, this correction can
be considered as an additional local potential near the
impurity. Phillips has analyzed such central-cell correc-
tions in terms of the atomic elastic potential and chemical
potential [14–16]. Other theoretical approaches, including
Green’s function methods, have been developed to treat
the central-cell potential and impurity level calculations
[17–20]. However, self-consistent calculations are difficult
to obtain, and sometimes fitting parameters are used to
represent the central-cell potential, defying the purpose of
predicting the binding energies. Thus, to date, accurate
ab initio predictions have not been practically attainable.
In this Letter we present an approach that can accurately
predict the binding energies of shallow acceptor levels with
a root-mean-square error of 8.4 meV for the systems we

tested. This approach combines two techniques, one allow-
ing the calculations of large systems, another providing an
accurate central-cell potential using the GW method. Here
we focus on acceptor levels since they tend to have larger
elemental dependencies.
One of us has previously developed a method for using

the local density approximation (LDA) of the density func-
tional theory to calculate the central-cell potential and
to apply it directly to a shallow impurity level calculation
with 64 000 atoms [21]. While it was found that the LDA
single-particle Hamiltonian provided the correct trend, it
could not yield accurate binding energies [21]. This app-
roach should be able to yield the elastic contribution to the
central-cell potential accurately. It thus raises the question
of whether the LDA is accurate enough for the chemical
contribution. This reminds us of the LDA band alignments
problem [22–24]. A more accurate approach is to use
the many-body perturbation GW method, which has been
demonstrated to provide better band alignments [22–25]
and can also be helpful in direct deep impurity level calcu-
lations [26]. Here we present an approach that includes the
GW effects in shallow impurity calculations.
There are two approaches for calculating the binding

energy of an impurity state. One is from the total energy
point of view, calculating it as the total energy difference
between the EðNÞ and EðN � 1Þ systems (the energy need-
ed to remove one electron from the impurity to the bulk).
This is used for deep level calculations [4,5,7]. The second
approach is to calculate the eigenenergy of the GW equa-
tion (which is equivalent to the total energy difference
between the N and N � 1 systems [27]). TheGW equation
can be written as

½�1=2r2þVðrÞ�c iðrÞþ
Z
�ðr;r0;"iÞc iðr0Þd3r0 ¼"ic iðrÞ:

(1)

Here, VðrÞ ¼ P
RZ=jr� Rj þ R

�ðr0Þ=jr� r0jd3r0 is the
local potential consisting of the ionic potential and
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Hartree potential calculated from the electron charge den-
sity �ðrÞ, and �ðr; r0; "iÞ is the nonlocal self-energy term.
The top of the valence band eigenenergy "i of the impurity
system, when compared with the bulk value, will give us
the impurity binding energy. However, it is presently com-
putationally impractical to simulate the entire system using
the GW method. We therefore seek appropriate approxi-
mations in order to solve Eq. (1). There are many versions
of self-consistency forGW calculations [25,28,29]. We use
a version where �ðrÞ will be taken from the LDA without
further updating. This procedure has been shown to be ade-
quate in band offset studies [22,24]. As a result, the local
potential VðrÞ in Eq. (1) will be the same as that in the LDA
Kohn-Sham (KS) equation, while the LDA exchange and
correlation potential �xcð�ðrÞÞ is replaced by �. The goal
is to use a modified potential to approximate the effects of
�. We further choose the G0W0 approximation for GW
calculations [25,28,29], although our procedure works for
any GW approach that does not update �ðrÞ.

We first consider a large supercell with N electrons.
After p type doping, the neutral system has N � 1 elec-
trons. One immediate question is whether one Should use
N orN � 1 electrons for Eq. (1)? For an exact quasiparticle
equation, the resulting "N is independent of choosing N or
N�1 (e.g., the total energy curveEðnÞ for n betweenN�1
and N is a straight line) [30]. This holds approximately for
the GW equation [31,32]. However, the KS eigenenergy
"N calculated from LDA depends sensitively on the total
number of electrons (partly due to the erroneous self-
interactions [33]). One important fact is that for a closed-
shell system, where there is a relatively large gap between
the highest occupied state and lowest unoccupied state, the
GW self-energy�ðr; r0; "iÞ is short ranged in regard to r-r0,
typically within a distance of 5 Å [34,35]. As a result, we
can perform small-system GW calculations and approxi-
mate the effects of � by some simplified short-range non-
local potential terms. Thus, we will choose the closed-shell
N electron system. In the following paragraphs, we desc-
ribe how to approximate Eq. (1) in different regions of the
impurity system.

The N electron system is �1 charged. As a result, the
VðrÞ will have a 1="r long-range potential tail where " is
the dielectric constant of the system. Thus, for a position r
far from the impurity, the potential part of the Hamiltonian
(for the top of the valence band) can be approximated as

Vtot � VðrÞ þ �ðr; r0; "VBMÞ ! VbulkðrÞ
þ �bulkðr; r0; "VBMÞ þ 1="r: (2)

The bulk part, Vbulk
tot �Vbulkþ�bulk, is short ranged (for

r-r0) and periodic. Its effects can be represented by the
LDA potential VLDA

bulk with a correction term. In a plane

wave pseudopotential calculation, each atom will have s,
p, d nonlocal pseudopotentials [for clarity, we have
ignored them in Eqs. (1) and (2)]. We have adjusted the s
nonlocal pseudopotentials to reproduce the bulk GW

effective masses (which have a large influence on the
impurity binding energies), while keeping the LDA bulk
valence band maximum (VBM) energies unchanged. In
Table S.I of the Supplemental Material [36] we list the
valence band effective masses obtained after the bulk
correction for GaAs. For the indirect band gap systems Si
and GaP (Table S.I [36]), the LDA effective masses with-
out correction are already adequate. In Table S.I [36] we
have used experimental effective masses as our references,
which are close to the GW effective masses that we calcu-
lated. We call the resulting potential (with the readjusted
atomic nonlocal part) VLDAþC

bulk .

Now, for r close to the impurity, the situation is more
complicated. As analyzed by Phillips [14,15], there are two
contributions to the central-cell potential. The first is the
elastic atomic relaxation and the related potential change
near the impurity [14]. This will be treated with LDA
calculations. The second is the difference between the
electronic structure of the impurity relative and its host
[15]. This will be treated withGW calculations. The elastic
strain due to a central impurity atom decays as 1=R3 [37].
As a result, the atomic displacement becomes very
small beyond a supercell size of about 512 atoms (see
Supplemental Material [36]). Thus, a 512-atom supercell
is relaxed using the plane wave pseudopotential density
functional theory method (with the VASP code [38–43]).
N¼2048 valence electrons are used (the Si:X and GaAs:X
systems are �1 charged). The resulting potential VLDA

512 ðrÞ
can be used to construct the potential inside the region of
the 512-atom box (�512), while Eq. (2) is used outside the
region. However, VLDA

512 cannot be connected with Eq. (2)

directly for Si:X and GaAs:X, since the as-calculated VLDA
512

from the �1 charged periodic supercell includes the 1="r
image potential from the neighboring imaging charges.
This image potential can be expressed as

VimðrÞ ¼
X

ði;j;kÞ�ð0;0;0Þ

1

"j~r� x̂Li� ŷLj� ẑLkj : (3)

Here, L is the size of the 512-atom supercell. This function
can be calculated numerically using FFTs, in a similar way
to the evaluation of Ewald energies [44]. Now for r 2 �512

VtotðrÞ ¼ VLDAþC
512 ðrÞ � VimðrÞ þ VC: (4)

Here, Vc is a constant that is used to shift the potential, so
Vtot can be matched to the potential outside the �512 box
described in Eq. (2) or, say, VLDAþC

bulk ðrÞ þ 1="r. Note that
the superscript LDAþ C means the same modified s non-
local potential (e.g., in GaAs) from the bulk fitting is used
for host atoms both inside and outside �512. The " is the
static dielectric constant which can either be calculated
using LDA with a slab technique [45] (which gives the
same result as the perturbation theory and allows the
calculation of ionic contribution), or directly taken from
experimental value to avoid LDA error [36]. Note that
based on the symmetry, beyond the spherical 1="r term,
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the potential tail can have a higher order octopole moment
term, which decays as 1=r8. The fact that the potential
inside and outside �512 can match at the boundary with
only a 3 meV error, using only the spherical potentials,
indicates that such a high-order effect is rather small
beyond �512 [21].

We have used this approach to construct a large supercell
containing up to 64 000 atoms. The Nth eigenstate (top of
the valence band) of this system can be calculated using the
folded spectrum method (FSM) [46], which solves only a
few eigenstates near a given reference energy Eref based on
the equation ðH � ErefÞ2c N ¼ ð"N � ErefÞ2c N . The state
c N is the impurity state, and its eigenenergy "N minus the
bulk VBM energy "VBM (using bulk VLDAþC

bulk ) gives us the

impurity binding energy. We have found that the impurity
state wave function c N can indeed extend to many thou-
sands of atoms [21], and the "N change with supercell size
is shown in Table I for the case of Si:In. All these findings
indicate that the 64 000-atom cell is necessary, similar to the
conclusion obtained from tight-binding calculations [9].

As shown in the fourth column of Table II, the binding
energies following the above procedure are not accurate
enough. We thus turn to the second contribution of the
central-cell potential, the electronic structure difference
between the impurity atom and the host atoms and its GW
treatment. So far, this difference is treated at the LDA level.
We expect the difference between �ðr; r0; "VBMÞ and
�bulkðr; r0; "VBMÞ to be localized near the impurity; thus,

we can use a 64-atom cell to capture this difference. We
have carried outGW calculations (using VASP) for 64-atom
supercells with one impurity atom (with LDA relaxed
atomic positions) using N ¼ 256 electrons (the system is
�1 charged but with a closed shell).
In order to generate a numerical Hamiltonian that is both

compatible with the rest of the VLDAþC potential and also
can be used to calculate the 64 000-atom system, we have
used the following procedure to transfer the information in
the 64-atom GW calculation to the large system calcula-
tion. Note that the GW Hamiltonian is obtained by replac-
ing the LDA exchange correlation potential�xcð�ðrÞÞ with
the GW self-energy term �ðr; r0; "VBMÞ while keeping the
local potential VðrÞ of Eq. (1) the same as in LDA. This
results in a well-defined eigenenergy shift of the 64-atom
impurity system �"64VBM ¼ "GW

VBMð64Þ � "LDAVBMð64Þ and

also an eigenenergy shift of the bulk system �"bulkVBM ¼
"GW
VBMðbulkÞ � "LDAVBMðbulkÞ. Since the bulk VBM energy

has been kept fixed in our bulk LDA modification to get
VLDAþC
bulk , in the current 64-atom LDA adjustment the over-

all shift for the "LDAVBMð64Þ should be �"VBM ¼ �"64VBM �
�"bulkVBM instead of �"64VBM. This assures that the alignment

between the local impurity potential and the bulk potential
is the same as in the GW calculations. The calculated
�"64VBM and �"bulkVBM are listed in Table S.II [36] for the

systems studied here. We see that the resulting �"VBM
varies from a few meV to 100 meV. Following in the
same procedure as in bulk LDA modification, here
we change the p nonlocal potentials for the atoms near
the impurity to generate the �"VBM shift. There are, how-
ever, several choices for this fitting representing the range
of the impurity nonlocal potential �ðr; r0; "VBMÞ. We have
tested three choices: (i) adjusting only the p nonlocal
potentials on the impurity atom; (ii) adjusting the p non-
local potentials of the impurity atom and the four nearest
neighbor atoms; and (iii) adjusting the p nonlocal poten-
tials of only the four nearest neighbor atoms. The fitting is
done to generate the desired shift �"VBM of the 64-atom
supercell while using minimum changes of the p potentials
(as presented in Table S.III [36]). We found that the final
64 000-atom VBM energy differs less than 1 meV among
these three choices, indicating the insensitivity of our final
results to the fitting procedure.
Using the 64-atom supercell fitted nonlocal potentials

for the impurity atom, the bulk fitted nonlocal potentials
for the host atoms (only for GaAs in our cases), the patched
LDA local potential of Eqs. (2) and (4), and the FSM [46],
we can now calculate the VBM eigenenergies of the
64 000-atom systems. Spin-orbit couplings due to the
core levels based on relativistic pseudopotentials are also
included in the Hamiltonian. This is important for heavy
atom impurities like Tl and Sn. We use LDAþGW to
indicate our results. The binding energies for Si acceptors
are listed in Table II. We see that the experimental binding
energy varies from 45.8 to 247.7 meV from B to Tl

TABLE I. Si:In impurity eigenenergy convergence relative to
bulk VBM with increasing supercell size L. 1� indicates the
final binding energy extrapolated from that of the smaller sizes.
This is for the LDA (eigen) calculation.

Cell size L 4a 8a 16a 20a 1�

Eim (meV) 188 110 92.3 91.7 91.6

TABLE II. Binding energies of shallow acceptor levels in Si
from experimental measurement [EbðexpÞ], calculated by
hydrogen model [EbðHydÞ], LDA eigenenergy method
[Eb LDAðeigenÞ], LDA total energy method with infinite super-
cell size [Eb LDAðEtot; infiniteÞ] and ‘‘LDAþGW’’ procedure
[EbðLDAþGWÞ] as described in the current Letter. The unit of
the energies is meV.

Host:

Imp

Eb

ðexpÞa
Eb

ðHydÞb
Eb LDA
ðeigenÞc

Eb LDA
ðEtot; infiniteÞc

Eb

ðLDAþGWÞ
Si: B 45.8 31.6 43 22 44

Si: Al 70.4 31.6 57 27 62

Si: Ga 74.2 31.6 59 28 71

Si: In 157.0 31.6 92 39 139

Si: Tl 247.7 31.6 112 50 246

aRef. [12].
bRefs. [10,11].
cRef. [21].
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impurities. Our calculated binding energy changes from
44 to 246 meV.

In order to test our procedure for more ionic systems,
we have also calculated the acceptor levels of GaAs. One
choice is with a column IV element to replace As, such
as GaAs:C, GaAs:Si, GaAs:Ge, and GaAs:Sn. Another
choice is with a group II element to replace Ga, such as
GaAs:Mg. The results are listed in Table III.

Lastly, we have also tested one isovalent impurity level
GaP:Bi. When one P is replaced by Bi, a single distinct
bound level above the valence band is formed. This is
special because the closed-shell N electron system is neu-
tral, and there is no 1="r tail on the potential. Thus, in the
above procedure, the potential tail in Eq. (2) should not be
added, and Vim need not to be subtracted in Eq. (4). In a
way, the central-cell potential is solely responsible for the
bound state. The calculated binding energy of 41 meV is
in excellent agreement with the experimental measurement
of 39.7 meV [47].

The calculated binding energies are plotted in Fig. 1
against the experimental values. Our LDAþGW results
fall close to the y ¼ x line. Some of the computational

details are presented in the Supplemental Material [36]. To
show the difference between the current method and other
theoretical approaches, we have also calculated the impu-
rity binding energies using other methods and plotted them
in Fig. 1. One approach is to follow the above procedure
but without GW correction of the 64-atom calculations.
They are denoted as the LDA(eigen) method. They are
much smaller than the experimental results, indicating the
inadequacy of using the LDA to describe the central-cell
chemical potential. We have also used the LDA total
energy approach to calculate the impurity binding energy.
This is the total energy difference between the EðNÞ and
EðN � 1Þ compared with the bulk VBM eigen-energy, as is
often done for deep level calculations [4–8]. We have
strictly followed the procedures described in Ref. [5] and
have used a 512-atom supercell. The result is shown as
LDA (Etot, 512) in Fig. 1. We see that the energy is far
away from the experimental result. Furthermore, as the
impurity wave function is much larger than the 512-atom
supercell [10], this procedure is not converged with respect
to supercell size. This can be seen from the results LDA
(Etot, infinite), which are based on the same total energy
difference formalism [5] but are estimated (instead of
directly calculated) from the 64 000-atom system impurity
eigenstate calculations (as derived in Ref. [21]). The results
are much smaller than the 512-atom results [LDA (Etot,
512)]. They are also much smaller than the 64 000-atom
LDA results based on the eigenenergy [LDA (eigen)].
Finally, our procedure can be summarized as the follow-

ing well-controlled and tested steps. (i) Correct the bulk
LDA nonlocal potential to reproduce theGW or experimen-
tal effective masses. (ii) Use a 512-atom supercell (with the
impurity atom) LDA calculation to relax the atomic posi-
tions and generate an LDA local potential V512. (iii) Using
V512, subtract the image potential to generate the potential
inside the 512-atom supercell, and match that to the outside
potential (which equals the LDA bulk potential plus a 1="r
term). This will generate an LDA local potentialV64 000

LDA for a

64 000-atom supercell. (iv) Carry out a 64-atom supercell
(with the impurity atom) GW calculation and obtain its
VBM eigenenergy shift relative to the LDA result. Fit the
impurity atom nonlocal pseudopotentials in the LDA calcu-
lation to reproduce this VBM eigenenergy shift in the
64-atom cell. (v) Use the fitted nonlocal potentials from
the bulk atom in (i), and the impurity atom in (iv), and the

V64;000
LDA obtained in (iii), together with the FSM to solve for

the VBM eigen-energy of the 64 000-atom system. The
resulting eigenenergy minus the bulk VBM eigenenergy
will be the impurity binding energy.
This work was supported by the Director, Office of

Science, Office of Biological and Environmental Research
(BER), Biological Systems Science Division (Zhang,
Canning, Derenzo) and the Office of Basic Energy
Sciences (BES), Materials Sciences and Engineering
(MSE) Division (Wang) of the U.S. Department of Energy

FIG. 1 (color). Calculated binding energies plotted against
experimental binding energies. The solid line indicates perfect
matching of theoretical results with experimental results. Our
final results are LDAþGW.

TABLE III. Binding energies of shallow acceptors in GaP and
GaAs from experimental measurement [EbðexpÞ], calculated by
‘‘LDAþGW’’ procedure [EbðLDAþGWÞ] and LDA total
energy method with 512-atom supercell [Eb LDAðEtot; 512Þ].
Host: Imp EbðexpÞ Eb LDAðEtot; 512Þ EbðLDAþGWÞ
GaP: Bi 39.7a � � � 41

GaAs: C 26.0b � � � 31

GaAs: Si 34.5b 56 34

GaAs: Ge 40.4b 71 53

GaAs: Sn 170.5b 98 160

GaAs: Mg 28.4b 68 34

aRef. [47].
bRef. [48].
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