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We present results of a microscopic density functional theory study of wedge filling transitions, at a

right-angle wedge, in the presence of dispersionlike wall-fluid forces. Far from the corner the walls of the

wedge show a first-order wetting transition at a temperature Tw which is progressively closer to the bulk

critical temperature Tc as the strength of the wall forces is reduced. In addition, the meniscus formed near

the corner undergoes a filling transition at a temperature Tf < Tw, the value of which is found to be in

excellent agreement with macroscopic predictions. We show that the filling transition is first order if it

occurs far from the critical point but is continuous if Tf is close to Tc even though the walls still show first-

order wetting behavior. For this continuous transition the distance of the meniscus from the apex grows as

‘w � ðTf � TÞ��w with the critical exponent �w � 0:46� 0:05 in good agreement with the phenome-

nological effective Hamiltonian prediction. Our results suggest that critical filling transitions, with

accompanying large scale universal interfacial fluctuation effects, are more generic than thought

previously, and are experimentally accessible.
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There is now direct experimental evidence for the ther-
mal excitation of the gravity stabilized capillary-wave-like
fluctuations at the interface between coexisting fluid
phases [1]. Over the last few decades theory has predicted
that such fluctuation effects are particularly important at
certain types of interfacial phase transitions such as critical
wetting [2–6]. Wetting refers to the unbinding of a fluid
interface from a solid substrate (or another fluid interface)
on approaching a temperature Tw, at which the contact
angle � vanishes. The order of these transitions is deter-
mined by the subtle interplay between wall-fluid and fluid-
fluid intermolecular forces and also interfacial fluctuations.
The original macroscopic argument for wetting transitions
had predicted that the transition would be first order, and
should necessarily occur on approaching the bulk critical
temperature Tc [7]. Model calculations soon revealed that
the location and order of the transition are more general
than this. In particular, Nakanishi and Fisher showed that,
for systems with short-ranged forces, the transition should
change from first order to continuous, if the surface forces
are weakened and Tw approaches Tc [8]. While this has
been fully tested in Ising model studies [9], this scenario is
altered by the presence of long-ranged, dispersionlike
intermolecular forces. In order to see continuous (now
referred to as ‘‘critical’’) wetting transitions one requires
a fine tuning of the range and strengths of the solid-fluid
and fluid-fluid forces [2,10]. Consequently while there are
many examples of first-order wetting, there are no unam-
biguous experimental examples of critical wetting for
solid-fluid interfaces, although the transition has been
seen in a few binary mixtures [5].

One way around this, which would allow one to see the
strong influence of interfacial fluctuations on a continuous
phase transition, is to consider fluid adsorption in a linear
wedge for which there is an analogous transition referred to
as filling [11–15]. This transition is far more common in
nature than the wetting transition and was first studied
experimentally almost 40 years ago [16] although the order
of the transition was not considered. Recent phenomeno-
logical effective Hamiltonian models have predicted that
fluctuation effects are enhanced compared to wetting and
also that the requirements that the transition can be con-
tinuous are more relaxed [17–19]. While this has been
studied extensively in the Ising model [20–24], the more
realistic case of long-ranged forces has not been studied in
detail. In this Letter we present the results of a study of
filling in the presence of dispersion forces, based on a
microscopic classical density functional theory (DFT).
The latter has been instrumental in developing our under-
standing of inhomogeneous fluids but is most usually
applied to systems in which the equilibrium density
depends on only one coordinate [25–28]. Here we use a
two-dimensional DFT to study filling transitions and com-
pare with the predictions of thermodynamic arguments and
effective Hamiltonian theory. We find that close to Tc the
filling transition is continuous even though the walls of the
wedge themselves still exhibit first-order wetting. This
result allows us to check interfacial Hamiltonian predic-
tions for the critical behavior and offers strong encourage-
ment that continuous filling transitions may be found in
the laboratory similar to experiments on complete wedge
filling [29].
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Consider a wedge geometry formed by two identical
infinite planar walls that meet at an opening angle 2c in
contact with a bulk vapor at the chemical potential �,
tuned to saturation � ¼ ��

sat at a temperature T < Tc.
The wedge may be thought as being a missing link between
a planar wall (c ¼ �=2) and a capillary slit (c ¼ 0) and
shows a phase transition (filling) which is distinct from
wetting and capillary condensation. Far from the apex the
thickness of the liquid wetting layer ‘� is the same as for a
planar wall. However near the apex, the thickness of the
meniscus can be much greater. Macroscopic arguments
dictate that the wedge is completely filled above a filling
transition temperature Tf which occurs when the contact

angle of a liquid drop satisfies [11–14]

�ðTfÞ ¼ �

2
� c : (1)

The wedge filling transition corresponds to the change
from microscopic to macroscopic adsorption, as T ! Tf,

and may be first order or continuous (critical filling) cor-
responding to the discontinuous or continuous divergence
of the adsorption. Because Eq. (1) is an exact requirement,
the filling transition is ubiquitous in nature for all fluids
that form drops with a finite contact angle.

Within classical DFT the equilibrium density profile is
found by minimizing the grand potential functional
�½�� ¼ F½�� þ R

dr�ðrÞ½VðrÞ ���, where VðrÞ is the

external potential [30]. We consider a right angle wedge
(c ¼ �=4) so that the potential VðrÞ ¼ Vðx; zÞ is a
function of Cartesian coordinates x, z > 0 and is transla-
tionally invariant along the wedge. Here F½�� is the
intrinsic free energy functional of the fluid one-body
density �ðrÞ, which can be split into ideal and excess
parts. Modern DFT often divides the latter into a hard-
sphere part Fhs½�� and an attractive contribution Fa½�� ¼
1
2

RR
dr1dr2�ðr1Þ�ðr2Þuaðr12Þ where uaðrÞ is the attractive

part of the fluid-fluid potential. We take this to be a
Lennard-Jones (LJ) potential uaðrÞ¼�4"ð�=rÞ6Hðr��Þ
which is truncated at rc ¼ 2:5�, where � is the hard-
sphere diameter and HðxÞ is the Heaviside function. For
Fhs½��we use Rosenfeld’s fundamental theory which accu-
rately models packing effects if the density is high close to
the walls [31,32]. The external potential arises from a
uniform distribution of wall atoms, with density �w, which
for r > � interact with the fluid atoms via the LJ potential
�wðrÞ ¼ �4"wð�rÞ6, leading to

Vðx; zÞ ¼ �w

�
1

z3
þ 2z4 þ x2z2 þ 2x4

2x3z3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p þ 1

x3

�
; (2)

where �w ¼ �ð1=3Þ�"w�w�
6. There is a hard-wall repul-

sion if x, z < �. Infinitely far from the wedge apex, the
potential close to either surface recovers that of a planar
wall, e.g., Vð1; zÞ ¼ 2�w=z

3. The functional�½�� is mini-
mized numerically on an L� L grid where the lateral
dimension of our box is L ¼ 50� and the grid has a

discretization size 0:05�. To mimic the bulk boundary
conditions we impose �ðL; zÞ ¼ ��ðzÞ and �ðx; LÞ ¼
��ðxÞ where ��ðzÞ is the equilibrium profile for a planar
wall-fluid interface with ��ðLÞ fixed to the bulk gas density
�g. In our model DFT kBTc=" ¼ 1:414 and temperature is

expressed either in fractions of Tc or in dimensionless units
T� ¼ kBT=".
We have considered a variety of wall strengths and

present results for "w ¼ 1:2", "w ¼ ", and "w ¼ 0:8".
For each, we first considered the planar wall with the
potential V�ðzÞ ¼ 2�w=z

3 and determined the density pro-
file ��ðzÞ and surface tensions 	wg, 	wl, and 	 of the wall-

gas, wall-liquid and liquid-gas interfaces, respectively.
From Young’s equation cos� ¼ ð	wg � 	wlÞ=	 we deter-

mined �ðTÞ for each of these systems (see Fig. 1). Each
system exhibits a wetting transition, with Tw determined
from the crossing of 	wg and 	wl þ 	. These occur at Tw ¼
0:83Tc, Tw ¼ 0:93Tc and Tw ¼ 0:99Tc as "w is reduced.
The wetting transitions are all first order; that is, the
thickness of the liquid layer ‘� jumps from a microscopic
to macroscopic value at Tw. This is to be expected since the
wall-fluid potential is long ranged but the truncated LJ
fluid-fluid interaction is effectively short ranged [2]. This
prohibits critical wetting, which is important for our study.
Also, as expected, the strength of the first-order transition
decreases as Tw approaches Tc. This is apparent when one
determines the interfacial binding potential Wð‘Þ corre-
sponding to the excess grand potential of a wetting film
constrained to be of thickness ‘. The global minimum of
this determines the equilibrium film thickness ‘�. This is
shown in Fig. 2 for the case "w ¼ 0:8" close to the wetting
temperature and shows an activation barrier, characteristic
of first-order wetting, at ‘B � 10�. For comparison the
barrier for the binding potential for "w ¼ " is an order of
magnitude larger and located at ‘B � 4�.

FIG. 1 (color online). Variation of the contact angle with T for
different wall strengths. The intersection with the dashed line at
� ¼ 45� is the thermodynamic prediction for Tf.
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According to the thermodynamic prediction Eq. (1), the
location of the filling transitions can be determined from
the intersection of the contact angle curves with c ¼ �=4
and gives Tf ¼ 0:76Tc, Tf ¼ 0:90Tc, and Tf ¼ 0:97Tc as

"w decreases in strength. To check this we set � ¼ ��
sat

and minimize �½�� to a global or local minimum �,
starting from different high density and low density con-
figurations. For first-order filling these will converge to
different equilibrium profiles, corresponding to micro-
scopic and macroscopic adsorptions, which coexist at Tf.

This is what is found for the two strongest walls as illus-
trated in Fig. 3 where we plot the excess grand potential
�ex ¼ �þ pV per unit volume as a function of T. The
values for Tf obtained are in near exact agreement with

the thermodynamic predictions and differ from them
only due to the limitations of numerical discretization
and finite size. In Fig. 4 we show the coexisting density
profiles �ðx; zÞ, corresponding to macroscopic (left) and

microscopic (right) states, for "w ¼ ". From these we can
determine the thickness ‘w of the meniscus above the
wedge apex defined as the distance from the origin to a
point on a diagonal where �ðx; xÞ ¼ ð�l þ �gÞ=2. The

macroscopic meniscus is nearly flat (as it should be since
we are at bulk coexistence) and meets each wall at the
correct contact angle � � �=4. Of course the size of this
macroscopic state is limited by our numerical grid and
scales with the system size L. For the microscopic con-
figuration the meniscus thickness ‘w is larger than the
wetting layer thickness ‘� but of the same order as the
distance of the activation barrier ‘B � 4� for the corre-
sponding binding potential for the wetting transition. This
is precisely the expectation for first-order filling from
effective Hamiltonian theory [18]. Both microscopic and
macroscopic profiles show layering behavior close to the
apex.
For the weakest wall strength "w ¼ 0:8", however, both

initial coverages converge to a unique phase indicating that
the transition, which is of course rounded by the finite size
of our system, is continuous. A plot of the adsorption � ¼RR
dxdzð�ðx; zÞ � �gÞ vs T is shown in Fig. 5 and shows a

dramatic but continuous increase in the adsorption near the
anticipated T�

f � 1:38. A cross section of the density
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FIG. 2. Binding potential functionWð‘Þ for "w ¼ 0:8" close to
a first-order wetting transition at T�

w ¼ 1:4 showing an activation
barrier at ‘B � 10�. In the inset we show the binding potential at
a lower temperature close to T�

f � 1:38 for which the activation

barrier is still present. In both cases the results correspond to a
bulk coexistence.

FIG. 3 (color online). Location of a first-order filling transition
for "w ¼ ". Here V is the available volume which is the length of
the wedge multiplied by ðL� �Þ2.
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FIG. 4 (color online). Coexisting macroscopic (left) and mi-
croscopic (right) density profiles at a first-order filling transition
for "w ¼ ".

FIG. 5. Temperature dependence of the adsorption in the
wedge with the weakest wall interaction "w ¼ 0:8". The inset
shows the log-log plot of the adsorption vs the scaling field
Tf � T. The slope of the straight line is �0:92.
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profile along the diagonal �ðx; xÞ for T � Tf is also shown

(see Fig. 6). This indicates that the order of the filling
transition is changed near the vicinity of Tc. Support for
this comes from the two sources. First, near Tf the menis-

cus height ‘w � 22� is considerably larger than the loca-
tion of the activation barrier ‘B � 10� associated with the
wetting binding potential (see the inset in Fig. 2). This is
not at all expected for first-order filling [18]. Second,
we can compare quantitatively with predictions for
critical filling. If the transition is critical then in an infinite
wedge we expect that ‘w � ðTf � TÞ��w with � / ‘2w
owing to the triangular shape of the meniscus. Effective
Hamiltonian theory predicts that the critical singularities
depend on the power law describing the dominant wall-
fluid or fluid-fluid interaction which we may write more
generally as VðzÞ � 1=zpþ1. The critical behavior falls into
two regimes with �w ¼ 1=p for p < 4 and �w ¼ 1=4 for
p > 4 [18]. Thus we anticipate �w ¼ 1=2 in our model
since p ¼ 2. The inset in Fig. 5 shows a log plot of the
adsorption for T < Tf, in which we use an unfitted estimate

of the filling temperature T�
f ¼ 1:38 obtained from Eq. (1).

This gives �w ¼ 0:46� 0:05 in good agreement with the
predicted value.

The presence of a critical (or at least effectively critical)
filling transition when Tf is close to Tc, when the walls still

exhibit first-order wetting, and in the presence of realistic
long-ranged interactions is the main new result of our
Letter, and is we believe encouraging for experimental
studies. To date there have only been detailed laboratory
studies of complete filling in linear wedges corresponding
to the approach to coexistence when the walls are com-
pletely wet (� ¼ 0) [29]. However the observation of
critical filling would be more interesting because fluctua-
tion effects are much stronger. For example, we expect that
beyond mean-field level, capillary-wave fluctuations do

not alter the divergence of ‘w � ðTf � TÞ�1=2 but do

lead to a universal interfacial roughness (width) 
? �
ðTf � TÞ�1=4 which is much bigger than for complete fill-

ing and also critical wetting [18]. These fluctuations are not

captured by the present DFT and consequently the density
profiles will be broader than predicted here. However our
DFT should be otherwise extremely accurate regarding the
location of the transition, its order, and the adsorption. The
observed change in order from first order to continuous
filling has only been partially anticipated by the previous
effective Hamiltonian theory. This had been predicted on
the basis of a simple interfacial model, valid only for
shallow wedges, but the proposed mechanism required
that both the wall-fluid and fluid-fluid forces be of the
same range. Then it was noted that even for first-order
wetting, the filling transition would be continuous if it
occurs at a temperature below which the activation barrier
forms in the binding potential Wð‘Þ [18]. However in the
present DFT study a small activation barrier is still present
at Tf (see the inset in Fig. 2), indicating that the prediction

of the simple, shallow wedge, effective Hamiltonian theory
is not completely correct. Nevertheless we believe that the
substantial reduction in the size of the barrier as T
approaches Tc plays a prominent role in the change of
order of the filling transition. Finally it would be interest-
ing to know if the change in order occurs via a tricritical or
critical end point and also what happens for more acute
wedges with stronger wall potentials.
In this Letter we have presented our results of numerical

studies of first-order and critical filling transitions in a
rectangular wedge using a nonlocal density functional
theory. This is the first time that filling transitions have
been studied using modern microscopic DFT in the pres-
ence of long-ranged wall-fluid interactions, and the results
show that close to the bulk critical temperature the wedge
filling transition may be continuous even though the walls
themselves exhibit first-order wetting.
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