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Symmetry reduced three-disk and five-disk systems are studied in a microwave setup. Using harmonic

inversion the distribution of the imaginary parts of the resonances is determined. With increasing opening

of the systems, a spectral gap is observed for thick as well as for thin repellers and for the latter case it is

compared with the known topological pressure bounds. The maxima of the distributions are found to

coincide for a large range of the distance to radius parameter with half of the classical escape rate. This

confirms theoretical predictions based on rigorous mathematical analysis for the spectral gap and on

numerical experiments for the maxima of the distributions.
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In semiclassical physics we investigate asymptotic
quantum-to-classical correspondence when an effective
Planck constant is small. Examples for closed systems
are the Weyl law [1] which gives densities of quantum
states using classical phase space volumes and the
Gutzwiller trace formula [2,3] which describes the fluctua-
tions of these densities in terms of classical periodic orbits
and their stability [3].

For open systems the correspondence between classical
and quantum quantities [4,5] is more delicate as energy
shells are noncompact and real eigenvalues of the
Hamiltonian become complex resonances [6–8]. The
imaginary parts of resonances are always negative and
they correspond to the rate of decay of unstable states.

For open chaotic systems the Weyl law is replaced by its
fractal analogue which gives asymptotics of the number of
resonances with bounded imaginary parts in terms of the
dimension of the fractal repeller (see Refs. [9,10] for
mathematical studies, Refs. [11–14] for numerical studies,
and Ref. [15] for recent experimental work). Studying the
distribution of the imaginary parts of resonances [13,14]
does not have a closed system analogue.

A paradigm for systems with fractal repellers is the
n-disk scattering system (see Fig. 1). It was introduced in
the 1980s by Ikawa in mathematics [16] and by Gaspard
and Rice [17–19] and Cvitanović and Eckhardt [20] in
physics. It is given by n hard disks with centers forming
a regular polygon. The distance between the centers is
denoted by R and the disk radius by a; R=a determines
the system up to scaling (see Fig. 1).

The quantum system is described by the Helmholtz
equation

�r2c n ¼ k2nc n; c n ¼ 0 on disc boundaries: (1)

The quantum resonances kn ¼ Rekn þ iImkn are the com-
plex poles of the scattering matrix. For the three-disk

system this scattering matrix is expressed using Bessel
functions and that allowed Gaspard and Rice [19] to
calculate the quantum resonances numerically.
Classically, particle trajectories are given by straight

lines reflected by the disks. From periodic trajectories a
wide range of classical quantities such as the classical
escape rate, the fractal dimension of the repeller, and the
topological pressure can be calculated using the Ruelle
zeta function [18]

��ðzÞ ¼
Y

p

�
1� expð�zTpÞ

��
p

��1
; (2)

where the product runs over the primitive periodic orbits,
Tp are the corresponding period lengths, and �p are the

stabilities. The topological pressure Pð�Þ is then defined as
the largest real pole of ��ðzÞ. An effective method for its

calculation is the cycle expansion [20,21]. The classical
escape rate is given by �cl ¼ �Pð1Þ and the reduced

FIG. 1 (color online). A sketch of a three-disk system is shown
on the left side, where one fundamental domain is shaded. On the
right side a photograph of the experimental cavity without top
plate supporting the disk inset and the absorber is presented.
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Hausdorff dimension dH of the fractal repeller by the
Bowen pressure formula PðdHÞ ¼ 0 [22].

Ikawa [16] and Gaspard and Rice [18] independently
described the quantum mechanical spectral gap as a topo-
logical pressure, a purely classical quantity. The spectral
gap in this context is the smallest C such that Imkn � C.
Gaspard and Rice used Gutzwiller’s trace formula and
semiclassical zeta functions to conclude that Imkn �
Pð1=2Þ. They confirmed this estimate numerically [17];
this estimate was later proved for general semiclassical
systems [23]. However, this lower bound is not optimal
as it does not take into account phase cancellation [5,24]
and for weakly open systems this bound is void: for sys-
tems with dH > 1=2, Pð1=2Þ> 0. Hence we distinguish
between ‘‘thick’’ repellers with dH � 1=2 [Fig. 4(a)] and
‘‘thin’’ repellers, dH < 1=2 [Fig. 4(b)] (see Ref. [5]).

The same estimate on the spectral gap was obtained
earlier for hyperbolic quotients �nH2 [25,26], another
mathematical model for chaotic scattering [27]. There,
quantum resonances (poles of the scattering matrix of the
surface) are the zeros of the Selberg zeta function and the
topological pressure can be calculated explicitly using �,
the dimension of the limit set of �: Pð�Þ ¼ �� �. The
estimate Imkn � �� 1=2 is known to be sharp as ið��
1=2Þ (a bound state when �� 1=2> 0) is a resonance.
There are no other resonances for Imk < Pð1=2Þ � �, for
some small � > 0 [28]. The question of further improve-
ments for the spectral gap is an active field of mathematical
research with deep applications to number theory [5,29].

An interesting property of the Imk distribution has been
observed numerically in Ref. [13]: the imaginary parts of
resonances concentrate at Imk ¼ ��cl=2 ¼ Pð1Þ=2, half
of the classical escape rate. Although no mathematical
result supports this ��cl=2, the density of resonances for
Imk >��cl=2 is lower [30] than the prediction from the
fractal Weyl law [31–33].

Another connection between the classical escape rate
and the quantum spectrum was observed in microwave
n-disk experiments [34,35]: the decay of the wave-vector
autocorrelation function for small wave vectors is related
to the classical escape rate.

In this Letter we focus on the distribution of imaginary
parts of resonances and compare spectral gaps and density
peaks of the experimental Imk distribution with the topo-
logical pressures and the classical escape rates.

The n-disk system is simplified by exploiting its Dn

symmetry. In this reduction, the two enclosing symmetry
axes are hard walls acting as ‘‘mirrors’’ (see the shaded
area in Fig. 1). For the quantum mechanical system
0-boundary conditions at the symmetry axes imply that
the corresponding scattering resonances are in the A2

representation [21]. The reduced three- and five-disk sys-
tem is realized using a microwave cavity. The triangular
resonator (see Fig. 1) has two metallic side walls of length
1 m meeting at 60� for the three-disk, and at 36� for the

five-disk system. Absorbers on the third side model an
open end. The ratio R=a is changed by moving a half-
disk inset of radius a ¼ 19:5 cm along the side wall in
steps of 10 mm. For the three-disk system the range 2:26 �
R=a � 6:17 was technically accessible; for the five-disk
case we had 2 � R=a � 3:9. A 0.7 mm wire antenna was
inserted through a hole in the top plate. The height of the
cavity h ¼ 6 mm leads to a cutoff frequency of 25 GHz.
From 2 to 24 GHz only the TM0 mode can propagate
and the cavity is effectively two dimensional. Hence the
equivalence between wave mechanics and quantum me-
chanics, i.e., between the time independent Helmholtz and
Schrödinger equation, is valid (for more on the setup see
Ref. [15], and for an introduction to microwave billiards,
see Chap. 2.2 of Ref. [36]).
Measurements by a vector network analyzer reveal the

complex S matrix. Assuming a point-like antenna, the
measured reflection signal equals [37]

S11ð�Þ ¼ 1þX

j

Aj

�2 � �2
j

; (3)

where �j are the complex valued resonance positions.

Extracting �j and Aj from the signal is the object of our

data analysis: for closed systems and low frequencies the
resonances are well separated and a multi-Lorentz fit
works. For open systems, where the resonances overlap
strongly, that fit does not converge. Therefore we applied
the harmonic inversion (HI) on the signal [15,38,39], a
sophisticated nonlinear algorithm, to extract the �j’s from

the measured signal. First S11ð�Þ is converted into a time
signal and discretized, yielding a sequence c1; . . . ; c2N.
Using the relations between the cn, a matrix of rank N is
created. The eigenvalues and eigenvectors of this matrix
contain the information about the resonances � and their
residues Aj (see Ref. [39]). The procedure yields N reso-

nances; hence N has to be chosen larger than its expected
number. Criteria for eliminating the unavoidable spurious
resonances and a detailed discussion are provided in
Ref. [15]. Thus we recall only the main ideas: for experi-
mental data we showed that the HI should be applied
several times with different sets of internal parameters,
each giving a set of �j and Aj. Then the reconstruction

based on these results is compared to the original signal.
Figure 2 shows part of a typical spectrum (black solid line)
and the best (concerning the �2 error) individual recon-
struction (blue dashed line) within the window indicated
by the vertical lines. The corresponding resonances are
marked by blue triangles in the lower panel, the complex
plane. The orange crosses belong to other resonance sets,
also leading to good reconstructions (to maintain clarity
they are not shown in the upper two panels), called good
resonances. Other sets not meeting the criterion are
rejected.
For the three-disk system we checked the reliability of

the HI by comparing the experimental resonances with
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calculations based on the algorithm of Gaspard and Rice
[19]. However, even for experiments with closed micro-
wave systems it is known that only the lowest resonances
agree well with the zeta function predictions. For higher
frequencies the experimental perturbations disturb the
measured spectrum such that the measured resonances
cannot be associated directly to the theoretical ones, but
statistical properties such as the resonance density persist
(see also Ref. [40]).

Figure 3 shows the good HI resonances in orange and the
best in blue for R=a ¼ 5:5, 40 � Rek � 500 m�1. The
orange poles form ‘‘clouds’’ around the blue triangles—
the elongated shape of the clouds is a consequence of the
nonisometric axis ranges. The black crosses indicate
the numerically calculated resonances. The composition
of resonance chains is typical for large R=a parameters
[13,19,41]. The individual resonances are not reproduced
by the experimental data due to inevitable reflections at the

absorbers and the perturbation by the antenna but the
resonance free regions and the resonance density coincide.
On the right of Fig. 3 the corresponding Imk distribu-

tions and PðImkÞ are shown, in solid black for the numeri-
cally calculated and in dashed-dotted blue for the
experimental spectrum. The distributions are the same
within the limits of error. This was also true for all good
reconstructions passing the �2 criterion—one example is
shown in orange. In fact, one can show that agreement with
PðImkÞ is robust with respect to errors in the reconstruction
as long as the number of resonances entering the recon-
struction is approximately the same. For the example
shown in Fig. 3 the number varied between 94 for the
numerical data and 117 for the individual reconstruction.
By measuring the averaged Imk distribution for reduced

three- and five-disk systems with different R=a, we can
study the dependence of the Imk distribution on the open-
ing of the system (see Fig. 4). For varying R=a the
averaged histogram of Imk is plotted as a shade plot. The
five-disk case is presented in Fig. 4(a). For R=a ¼ 2
the system is completely closed; however, we observe
already a small gap � 0:15 m�1 due to antenna and wall
absorbing effects. When opening the system the very nar-
row Imk distribution first gets wider and the maximum of
the distribution moves towards higher imaginary parts.
From R=a � 2:5 the resonance free region starts to grow
and reaches a value of � 0:5 m�1 for the maximal acces-
sible opening at R=a ¼ 3:9. Over the whole R=a range the
value of Pð1=2Þ stays positive, thus providing no lower
bound on the spectral gap. The solid black line in the shade
plot shows half the classical escape rate calculated by the
cycle expansion. We show this curve only for R=a > 2:41
as for lower values pruning starts for order 4 orbits, and the
symbolic dynamic is no longer complete [20]. In agree-
ment with high frequency calculations [13], our experi-
ment in a much lower frequency regime shows that the
maximum of the Imk distribution is described by ��cl=2.
We emphasize that there are no free parameters to fit �cl to
the experiments.

FIG. 2 (color online). Three-disk system at R=a ¼ 2:88: in the
lowest panel resonances belonging to good (orange crosses) and
the best reconstruction (blue triangles) are shown in the complex
plane within a small frequency range. The upper two panels
show the real and imaginary parts of the measured signal (black,
dashed), and of the best reconstruction (blue) in this window
(vertical lines) based on the poles marked by the blue triangles.

FIG. 3 (color online). In the left panel the resonances for R=a ¼ 5:5 in the complex k plane are shown as well as the distribution of
the imaginary parts of k in the right panel. The shown k range corresponds to a frequency range from 2 to 24 GHz. The orange clouds
correspond to all resonances resulting in a good reconstruction as well as the orange histogram. Note that many orange dots might
overlay each other. Blue triangles and blue dashed-dotted histogram describe the set belonging to the best reconstruction. Black crosses
are the numerically calculated poles and the solid black histogram the corresponding distribution. The dotted red line in the right panel
is Pð1=2Þ; the red dashed line ��cl=2 ¼ Pð1Þ=2.
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The three-disk system is more open and the repeller
becomes thin for R=a � 2:83; i.e., Pð1=2Þ< 0 provides a
lower bound on the gap. Again one sees that the gap first
increases and only for high R=a values coincides with the
lower bound Pð1=2Þ (dotted black line). At which exact
value of R=a the gap appears and whether it appears before
Pð1=2Þ becomes negative is less clear than in the five-disk
system. The area of the totally closed system (R=a ¼ 2) is
too small to allow meaningful measurements. Since there
are no pruned orbits until order 4 from R=a ¼ 2:01 on, we
are able to plot the calculated curve for the full measured
range. The maximum of the Imk distribution decreases
for R=a > 3 which might be surprising at first sight. The
reason is that the time of flight between two scattering

events increases linearly which will overcompensate
the defocusing effect of a scattering event for large
enough R=a.
Figure 4(c) shows the shade plot for the numerical data

of the reduced three-disk system. Again the correspon-
dence of ��cl=2 (solid black line) is clearly visible only
for larger R=a values. For large R=a the lower bound
Pð1=2Þ (dotted black line) coincides well with the numeri-
cally observed gap. The first appearance of the gap is not
described by Pð1=2Þ; see 2:5< R=a < 2:83. Here Pð1=2Þ
is still positive but a clear gap is already visible, the same
phenomenon as observed in the experimental data of the
five-disk system. We note that Pð1=2Þ is a lower bound for
the gap and that it is not optimal at high energies [24,28].
It may happen in the experiment, but not in the hyperbolic
quotient case, that some low energy resonances violate
the semiclassical gap bound Pð1=2Þ. However, we are
restricted in the wave number range; thus, it is not guaran-
teed that we observe the optimal gap. For the numerical
data [see Fig. 4(c)] all imaginary parts calculated are
below Pð1=2Þ. The fact that there seem to be values below
Pð1=2Þ is due to the bin size of the histogram. In the
experimental spectra the small number of resonances
within the gap correspond to spurious resonances which
survived the filtering.
In this Letter we have demonstrated the existence of a

spectral gap in open chaotic n-disk microwave systems.
We could extract the resonances from the measured signal
and thus had direct access to the gap and the maximum of
the Imk distribution. These were compared with the calcu-
lated classical values for Pð1=2Þ and ��cl=2 ¼ Pð1Þ=2.
A good agreement was found for sufficiently open systems.
But we also show that the bound Pð1=2Þ does not describe
the opening of the gap for experimental or numerical data.
We would like to emphasize that all investigations were
performed in the low lying k regime thus showing a
remarkable agreement with the semiclassical predictions.
We thank S. Nonnenmacher, B. Eckhardt for intensive

discussions, S. Möckel for providing C++ code, and DFG
via the Forschergruppe 760, ‘German National Academic
Foundation’ (T.W.), CNRS-INP via the program PEPS-
PTI (U.K.), and NSF via Grant No. DMS-1201417 (M. Z.)
for partial support.
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