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We introduce and study the properties of an array of QED cavities coupled by nonlinear elements, in the

presence of photon leakage and driven by a coherent source. The nonlinear couplings lead to photon

hopping and to nearest-neighbor Kerr terms. By tuning the system parameters, the steady state of the array

can exhibit a photon crystal associated with a periodic modulation of the photon blockade. In some cases,

the crystalline ordering may coexist with phase synchronization. The class of cavity arrays we consider

can be built with superconducting circuits of existing technology.
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Since its beginning, the study of light-matter interaction
in cavity and circuit QED has been providing a very fertile
playground to test fundamental questions at the heart of
quantum mechanics, together with the realization of very
promising implementations of quantum processors [1,2].
The coupling of separate cavities through photon hopping
introduces an additional degree of freedom that is receiving
increasing interest both theoretically and experimentally.

Cavity arrays, periodic arrangements of neighboring
QED cavities, have been introduced [3–5] as prototype
systems to study many-body states of light. Their very
rich phenomenology arises from the interplay between
strong local nonlinearities and photon hopping. In the
photon blockade regime, the array enters a Mott insulating
phase, where photon number fluctuations are suppressed.
In the opposite regime, where the hopping dominates,
photons are delocalized through the whole array with
long-range superfluid correlations. The phase diagram
has been thoroughly studied by a variety of methods, and
the locations of the different phases, together with the
critical properties of the associated phase transitions,
have been determined (see, e.g., the reviews [6–8]).

The properties of cavity arrays resemble in several
aspects those of the Bose-Hubbard model [9], as long as
particle losses can be ignored. Cavity arrays, however, will
naturally operate under nonequilibrium conditions, i.e.,
subject to unavoidable leakage of photons which are
pumped back into the system by an external drive. In this
case, the situation may change drastically, and, to a large
extent, it is an unexplored territory. Only very recently
have the many-body nonequilibrium dynamics of cavity
arrays started to be addressed [10–13], thus entering the
exciting field of quantum phases and phase transitions in
driven quantum open systems [14–19].

Since the very beginning, all the works devoted to cavity
arrays studied the case in which adjacent cavities are
coupled by photon hopping. In this Letter, we introduce a

new class of arrays in which the coupling between cavities
is mediated by a nonlinear element or medium. Thanks to
the flexibility in the design of the nonlinear coupling
elements, these finite-range couplings can appear in the
form of cross-Kerr nonlinearities and/or as a correlated
photon hopping, leading to a steady-state phase diagram
that is a lot richer than the cases which have been consid-
ered so far. Here we discuss in particular the appearance
of a new phase in cavity arrays, a photon crystal, which
emerges in the steady-state regime when the array is driven
by a coherent homogeneous pump.
A technology that is very well suited for realizing cavity

arrays with such features is provided by circuit QED [20],
where exceptional light-matter coupling has been demon-
strated [21], first experiments with arrays of up to five
cavities have been done [22], and great progress towards
experiments with lattices of cavities has already been
achieved [8].
In the following, we first introduce the model for the

cavities with their nonlinear couplings, the external drive,
and the unavoidable leakage of photons. We present a
possible implementation in an array of circuit-QED cav-
ities that are coupled via a nonlinear element. We then
study the steady-state regime by means of a mean-field
approach and matrix product operator (MPO) simulations
[23]. The scenario that emerges is rather complex, with the
appearance of a number of phases and phase instabilities.
We focus in particular on the possibility of spatial photon
patterns that can emerge. For bipartite lattices the photon
blockade is modulated on two different sublattices; fur-
thermore, on increasing the photon hopping it may also
coexist with a global coherent state.
The model.—The cavity array is sketched in Fig. 1(a).

The coupling between the cavities is mediated by a non-
linear element. In the specific implementation in circuit
QED, this element is a Josephson nanocircuit. When the
coupling between the cavities is realized through the
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circuit described in Fig. 1(b), linear tunneling of photons
between adjacent cavities can be tuned and even fully
suppressed by adjusting the nonlinear coupling circuits to
a suitable operating point; see Supplemental Material [24]
for details. In this regime the cavities are coupled via a
strong cross-Kerr term and further correlated-hopping
terms, which can lead to considerable modifications in
the phase diagram [25]. Yet there are also more involved
approaches involving multiple transmon qubits to realize
cross-Kerr interactions in the absence of correlated hop-
pings [26], see also [27,28]. However, in the regime of
parameters we are interested in and where a photon crystal
emerges, correlated hopping leads to small quantitative
corrections at the expense of complicating considerably
the analysis. In the Supplemental Material, we quantify
these differences in more detail [24].

Here for simplicity, we concentrate on the salient
features of the array in Fig. 1 which are captured by the
effective Hamiltonian (in the rotating frame)

H ¼ X

i

½��ayi ai þ�ðayi þ aiÞ� � J
X

hi;ji
ðayi aj þ H:c:Þ

þU
X

i

niðni � 1Þ þ V
X

hi;ji
ninj; (1)

where the number operator ni ¼ ayi ai counts the photons

in the ith cavity [ayi (ai) being the creation (annihilation)
operator]. The first three terms describe, respectively, the
detuning � of the cavity modewith respect to the frequency

of the pump, the coherent pump with amplitude�, and the
hopping of photons between neighboring cavities at rate J.
The last two terms take into account the nonlinearities
through the on-site and cross-Kerr terms with the associ-
ated energy scales U and V, respectively. In the specific
case of circuit-QED arrays, the two types of nonlinearities
can be realized through the setup of Fig. 1. In order to keep
our results as general as possible, we consider the effective
model (1) without specifying further the underlying
matter-light interaction term.
The dynamics of the array is governed by the master

equation

_� ¼ �i½H ; �� þ �

2

X

i

ð2ai�ayi � ni�� �niÞ; (2)

where ��1 is the photon lifetime in each cavity. The model
in Eq. (1) together with Eq. (2) encompasses, in some
limiting cases, regimes that were already addressed in the
literature. The regime of U ! 1 and J ¼ 0 was consid-
ered in Ref. [18], where an antiferromagnetic phase was
first predicted in Rydberg atoms. The case of on-site Kerr
nonlinearity, i.e., V ¼ 0, is the only one studied so far in
cavity arrays [12]. The model considered here offers a much
richer phase diagram. A unique characteristics of the cavity
arrays with nonlinear couplings is that the cross-Kerr non-
linearity V can even exceed U. By coupling an additional
qubit locally to each resonator [29], different ranges of the
ratio V=U can be explored. Moreover, in devices where on-
chip control lines can be used to locally thread magnetic
fields through the loops of the coupling circuits and the
additional transmons, the ratios J=U (respectively, J=V
and V=U) can be tuned on chip. For this reason we will,
in the following, consider U, V, and J as independent.
We first discuss the steady-state phase diagram in the

mean-field approximation, which becomes accurate in the
limit of arrays with large coordination number z. The decou-
pling in Eq. (1) is performed on the hopping and cross-

Kerr terms z�1
P

hi;jia
y
i aj!hayAi

P
i2BaiþhayBi

P
j2Aaj and

z�1
P

hi;jininj!hnAi
P

i2BniþhnBi
P

j2Anj, where we as-

sumed a bipartite lattice, A and B being the two sublattices.
The mean-field analysis simplifies the dynamics dictated by
Eq. (2) to two coupled equations for the two different sub-
lattices. As a function of all the parameters characterizing
the system and its dynamics, one gets a very rich behavior
in the asymptotic regime which includes steady-state
(oscillating) phases, as well as uniform (staggered) configu-
rations. Here we highlight what we think are its most intri-
guing features. All the couplings will be expressed in units
of the photon lifetime � ¼ 1.
Mean-field steady-state diagram.—Figure 2, where for

the moment we set the hopping to zero, shows that, on
increasing the cross-Kerr term, the array can reach a steady
state in which the photon number is modulated as in a
photon crystal, the order parameter being �n ¼ jhnAi �
hnBij. Here the area above the green line denotes the

FIG. 1 (color online). (a) An array of QED cavities described
by oscillator modes (red circles) that are coupled via nonlinear
elements (crossed boxes). (b), (c) Implementation of its building
blocks in circuit QED for one- and two-dimensional lattices. The
circuit cavities are represented by a LC circuit with capacitance
C and inductance L and mutually coupled through a Josephson
nanocircuit, with capacitance CJ and Josephson energy EJ , that
generates the on-site and cross-Kerr terms in Eq. (1). Details of
this implementation can be found in Ref. [24]. An alternative
approach to cross-Kerr interactions is discussed in Ref. [26].
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crystalline phase. In the U ! 1 limit, the transition
between the uniform and the crystal phases is located at
zVc ’ �1ð�2�þ ffiffiffiffiffiffiffi

�1
p Þ=4�2 with �1 ¼ 4�2 þ 8�2 þ 1,

the previous expression holding for small detunings, and
coincides with the transition to an antiferromagnetic phase
described in Ref. [18]. Note that a lower value of U favors
the crystal phase. In the opposite limiting case of U ¼ 0,
the transition is found at zVc ’ �0ð�2�þ ffiffiffiffiffiffi

�0
p Þ=4�2 with

�0 ¼ 4�2 þ 1. We deliberately considered a regime in the
parameter space where V � U, since, as already men-
tioned, it is a peculiar feature of the cavity arrays proposed
here. The transition to the crystal phase is reentrant as a
function of the drive (inset in Fig. 2). At very small
pumping the density is too low to lead to a photon crystal.
Vice versa, it also disappears on increasing�, since pump-
ing favors an homogeneous photon arrangement. A similar
feature has been observed in the limit U ¼ 1 [18].

If the hopping between photons is switched on, deloc-
alization will suppress the solid phase, and at a critical
value of J (which depends on V, U, �, and �) there is a
transition to a normal phase. This is shown in Fig. 3, as a
function of the cross-Kerr nonlinearity V [Fig. 3(a)] and of
the detuning � [Fig. 3(b)]. In Fig. 3(a), we display the case
U ¼ 1, while at smaller values of U the phase diagram
shows a reentrance. Although interesting, further analysis
is needed to see if this feature is present only at mean-field
level. Yet it does not seem improbable that an increased
hopping could facilitate the redistribution of particles
into a crystalline order imposed by the interactions.
We conclude this discussion by pointing out that, as dis-
cussed in Ref. [24], under nonequilibrium conditions it

is even possible, although much harder, to realize a crys-
talline phase at V ¼ 0. As a matter of fact, in that case,
for some values of the coupling constants, the steady state
can be either uniform or crystalline, depending on the
initial conditions.
The mean-field phase diagram in the �� J plane and for

U ¼ 0 is depicted in Fig. 3(b). As highlighted in the region
between the dashed green lines, for 0:8 & � & 1:1, on
switching on the photon hopping, a new intermediate phase
appears. In this region, even in the long-time limit the state
never becomes completely stationary, and there is a resid-
ual time dependence of hai with haAi � haBi; i.e., there is
an additional time dependence of hai on top of the trivial
oscillation with the frequency of the coherent drive that is
hidden in our choice of the rotating frame. At the same
time, the system shows �n � 0. In Fig. 4(a), we show the
time evolution of the real and imaginary parts of hai for
the two sublattices. A closer inspection of the properties of
the oscillating phase reveals that the reduced density
matrix of a single site (in either of the two sublattices) is
a coherent state which evolves periodically in time as
shown in Fig. 4(b). There we plotted the Wigner function
Wðx; pÞ ¼ Rhx� yj�Ajxþ yie2ipydy of one sublattice at a
given time, with x ¼ ðaþ ayÞ= ffiffiffi

2
p

, p ¼ iðay � aÞ= ffiffiffi
2

p
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FIG. 2 (color online). Order parameter �n for the photon
crystal in the U-V plane at zero hopping. If the cross-Kerr
term exceeds a critical threshold Vc, the steady state is charac-
terized by a staggered order in which �n � 0. Here we fixed
� ¼ 0:75 and � ¼ 0, for which zVc � 0:44 at U ¼ 0, while
zVc � 5:73 in the hard-core limit (U ! 1). In the inset, we
show �n as a function of � and V at a fixed value of U ¼ 1.
Here and in the next figure, the color code signals the intensity of
the order parameter, while dashed green lines are guides to the
eye to locate the phase boundaries.
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FIG. 3 (color online). Order parameter for the photon crystal at
finite hopping. �n is plotted as a function of J and V, for � ¼ 0
and U ¼ 1 (a), and as a function of J and �, for zV ¼ 0:6 and
U ¼ 0 (b). Here we fixed � ¼ 0:75. At finite values of the
detuning, in addition to the normal (white) and crystalline
(colored) phases, an intermediate region (shaded green), char-
acterized by an oscillatory behavior in the asymptotic state,
appears. As discussed in the main text, we suggest this last
regime may be seen as a nonequilibrium analog of a supersolid.
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and jxi being an eigenstate of the position operator x.
Following the analysis performed in Ref. [19], we are led
to conclude that in this region the dynamical evolution of
the whole array is synchronized separately in the two
different sublattices. The contemporary presence of check-
erboard ordering and global dynamical phase coherence
suggests us to view this intermediate phase as a nonequi-
librium supersolid phase [30]. The intermediate region
extends also at finite-U values, although the coherent state
of Fig. 4(b) will be progressively deformed on increasing
the on-site repulsion.

MPO simulations.—Most of the features we discussed
can already be seen in small arrays. To show some examples
and to further support the mean-field analysis given above,
we here present results that were obtained for linear chains
of cavities, z ¼ 2, with MPO simulations [12] of the master
equation (2), which provide a (numerically) exact descrip-
tion of its nonequilibrium many-body dynamics. Figure 5(a)

shows the density-density correlation function gð2Þði; jÞ ¼
hayi ayj ajaii=hniihnji for a chain of 20 cavities with � ¼ 0,

J ¼ 0, U ¼ 0:5, � ¼ 0:4, and various values of V. One
clearly sees that a staggered dependence of the distance
r ¼ ji� jj, indicating strong density-density correlations,
appears for nonzero V, whereas for V ¼ 0 photons in dis-

tinct cavities are uncorrelated (gð2Þ ¼ 1). Figure 5(b) shows

gð2Þ for a chain of 21 cavities with � ¼ 0, U ¼ 1, V ¼ 1,
� ¼ 0:4, and various values of J. The spatial range of
density-density correlations shrinks with increasing tunnel-
ing rate J, indicating a crossover to an uncorrelated state.
A more quantitative analysis of the decay of correlations
with increasing distance is not conclusive for the chain
length considered here. A true ordering in the steady state
can probably be stabilized only in two dimensions.

Conclusions.—In this Letter, we introduced cavity arrays
with coupling mediated by nonlinear elements. This opens
the way to study a variety of new possibilities, including

correlated photon hopping and finite-range photon block-
ade. We concentrated on this last point by studying the
effect of a cross-Kerr nonlinearity on the steady state and
found a very rich phase diagram. A photon solid character-
ized by a checkerboard ordering of the average photon
number appears for a substantial range of the coupling
constants. In addition, we see that, for some choice of the
parameters, a finite hopping stabilizes a phase where the
crystalline ordering coexists with a globally synchronized
dynamics of the cavities, suggesting an analogy to a non-
equilibrium supersolid. Most of the results presented in
this work were obtained in a mean-field approximation.
We corroborated the existence of a steady-state solid phase
by studying a one-dimensional array by means of a matrix
product operator approach. This last analysis confirms that
a crystalline ordering of photons can be observed with
existing experimental technology.
We acknowledge fruitful discussions with A. Tomadin.
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[18] T. E. Lee, H. Häffner, and M.C. Cross, Phys. Rev. A 84,
031402(R) (2011).

[19] M. Ludwig and F. Marquardt, arXiv:1208.0327.
[20] M. Leib and M. J. Hartmann, New J. Phys. 12, 093031

(2010).
[21] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke,

M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer,
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