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A major challenge of the phase estimation problem is the engineering of high-intensity entangled probe

states. The goal is to significantly enhance above the shot-noise limit the sensitivity of two-mode

interferometers. Here we show that this can be achieved by squeezing in input, and then measuring in

output, the population fluctuations of a single mode. The second input mode can be left as an arbitrary

nonvacuum (e.g., a bright coherent) state. This two-mode state belongs to a novel class of particle-

entangled states which are not spin squeezed. Already a 2.4 db gain above shot noise can be obtained when

just a single-particle Fock state is injected into the empty input port of a classical interferometer

configuration. Higher gains, up to the Heisenberg limit, can be reached with squeezed states of a larger

number of particles. We finally study the robustness of this protocol with respect to detection noise.
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Optical and atomic interferometers are among the most
sensitive devices for metrology and weak forces detection
[1,2]. Most interferometers can be mapped on the linear
Mach-Zehnder (MZ) configuration, Fig. 1(a), where the
phase shift is equally imprinted on each particle entering
the device. The sensitivity of the phase estimation crucially
depends on the nature of the particles quantum state.
Current interferometer technology exploits high-intensity
classical fields, reaching a phase uncertainty scaling as the
inverse square root of the average total number of particles.
This bound is known as the shot-noise (or standard quan-
tum) limit. The phase uncertainty can be further reduced,
down to the fundamental quantum level (the so-called
Heisenberg limit), by engineering proper particle-entangled
input states [3,4]. This is a groundbreaking prediction of
quantum mechanics which is under intense experimental
[5–12] and theoretical [13] investigation. However, in sev-
eral technological applications, such protocol needs non-
classical sources of high intensity. To achieve this goal,
current atomic and optical schemes exploit spin-squeezing
techniques [14]. In particular, on the optical side [2,12], this
is achieved with a high-intensity coherent state in one input
port and a low intensity squeezed-vacuum state in the other
input, as first proposed by Caves [15].

In this manuscript we discuss an alternative scheme to
reach a sub-shot-noise phase uncertainty with high-
intensity states. We study

�̂ ¼ �̂a � jNibhNj; (1)

where �̂a is an arbitrary (for instance, coherent or thermal)
nonvacuum state in mode a and jNib is a Fock state of N
particles in mode b. We show that Eq. (1) is particle
entangled and, when used as input of a MZ interferometer,
Fig. 1(a), can provide a sub-shot-noise phase uncertainty
down to the Heisenberg limit. We also demonstrate that
Eq. (1) belongs to a novel class of states which are not spin
squeezed and do not require a precise phase relation

between the two modes (in contrast, for instance, to the
case of Ref. [15]). Finally, our main results can be gener-
alized by replacing the Fock state in Eq. (1) with a number-
squeezed state [16].
The state (1) can be experimentally created with a large

number of particles: the input mode a can be a high-
intensity coherent state, while Fock states of various par-
ticle numbers are nowadays experimentally available. In
the context of phase estimation, Fock states have been
created by parametric down-conversion with photons
[9–11] (see also Ref. [17]) and by spin-changing collisions
with Bose-Einstein condensates [8] (see also Ref. [18]).
With cold atoms, single-mode Fock states may be provided
by nondestructive atom-light interaction [19].
The ultimate phase uncertainty achievable in a MZ

interferometer with a generic input state �̂inp is given

by the quantum Cramer-Rao (QCR) bound [3,4,20–22],

��QCR ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFQ½�̂inp; Ĵy�

q
. HereFQ½�̂inp; Ĵy� is the quan-

tum Fisher information, m is the number of measurements,

the operators Ĵx ¼ ðâyb̂þ b̂yâÞ=2, Ĵy ¼ ðâyb̂� b̂yâÞ=2i,
and Ĵz ¼ ðâyâ� b̂yb̂Þ=2, commute with the total number

of particles operator n̂ ¼ âyâþ b̂yb̂ and satisfy the com-
mutation relations for the Lie algebra of SU(2), where â and

b̂ (ây and b̂y) are bosonic mode annihilation (creation)

operators. The unitary MZ transformation is e�i�Ĵy [23],
where � is the unknown phase shift. A direct calculation

with Eq. (1) gives FQ½�̂; Ĵy� ¼ 2Nna þ N þ na [22],

and thus

��QCR ¼ 1ffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nna þ N þ na

p ; (2)

where na ¼ Tr½âyâ�̂a� is the average number of particles in
�̂a. It is interesting to discuss a few limit cases. If one of the
two modes is empty (N ¼ 0 or na ¼ 0), the phase uncer-
tainty Eq. (2) is, as expected, given by the shot-noise limit,
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��sn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
mhn̂ip

, where hn̂i ¼ N þ na. We obtain a sub-
shot-noise uncertainty as soon as both the input modes are
not empty (Nna > 0). An important limit is when �̂a con-
tainsmost of the particles (e.g., it is a large intensity coherent
state). In this case the phase uncertainty is

��QCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p 1ffiffiffiffiffiffiffiffiffiffiffi
mhn̂ip for na � N; (3)

where hn̂i ¼ ðna þ NÞ � na is the average number of par-

ticles. Equation (3) is below ��sn by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p
.

Notice that already with a single particle (N ¼ 1) in mode b
[24] it is possible to overcome the shot noise by 2.4 db,
while �7 db can be obtained with N � 10, see Fig. 1(b).
For a fixed average number of particles hn̂i ¼ na þ N � 1,
the lowest phase uncertainty is obtained for N ¼ na ¼
hn̂i=2 and Eq. (2) predicts

��QCR ¼
ffiffiffi
2

p
hn̂i ffiffiffiffi

m
p for na ¼ N � 1: (4)

We thus recover a phase uncertainty at the Heisenberg

limit [4] (modulo a factor
ffiffiffi
2

p
). As already emphasized,

Eqs. (2)–(4) do not depend on the specific properties
of the input state �̂a. In particular, if �̂a ¼ jNiahNj,
Eq. (1) reduces to the twin-Fock state first studied in
Ref. [25] and recently experimentally investigated in
Refs. [8–11].
So far, we have restricted our discussion to the

QCR uncertainty. It is well known that this bound can be
saturated by optimal generalized measurements [21].
However, in current experiments, the phase shift is
generally estimated by measuring the number of particles
in one or both of the output ports of the interferometer.
We first show that, when measuring the number of
particles in a single output port of the MZ, Fig. 1(a),
it is possible to obtain a phase estimation saturating
the prediction of the QCR at optimal phase values.
In this case, since the other output is unused, our inter-
ferometer configuration is suitable for power recycling.
When considering the case na � N [thus achieving
the phase uncertainty predicted by Eq. (3)], the phase
estimation requires the measurement of the small
intensities. Detectors for a small number of particles are
available with high efficiency. We will later show that,
when measuring the number of particles at both output
ports of the MZ, we can obtain a phase uncertainty satu-
rating the QCR bound at any value of the phase shift.
The probabilities of output measurements, given by the

phase shift �, are the relevant ingredient for phase estima-
tion. For a MZ with generic input �̂inp, the probability to

measure Nc and Nd particles at the two output ports is

given by PðNc; Ndj�Þ ¼ hNc;Ndje�i�Ĵy �̂inpe
i�Ĵy jNc; Ndi.

Because of the conservation of particle number, for

input state Eq. (1) this simplifies to PðNc; Ndj�Þ ¼
�NcþNd�NhNc; Ndje�i�Ĵy jN; Nc þ Nd � Ni2, where the

rotation matrix element is real and �n ¼ hnj�̂ajni. In
the case of single detection mode, the probability to mea-
sure Nc particles at the output port c is PðNcj�Þ ¼P

Nd
PðNc; Ndj�Þ. For the input state Eq. (1) we find

PðNcj�Þ ¼
Pþ1

n�n0
�nhNc;N þ n� Ncje�i�Ĵy jN; ni2 where

n0¼maxf0;Nc�Ng. For an explicit expression of
PðNc; Ndj�Þ and PðNcj�Þ in terms of Jacobi polynomials,
see Ref. [22]. Given these conditional probabilities, the
phase uncertainty can be calculated as the Cramer-Rao
(CR) bound for unbiased estimators [22,26]. In general,
there is no guarantee that an unbiased estimator saturat-
ing this bound exists for an arbitrary small number
of measurements m [27]. However, asymptotically in
m, it is known [26] that the maximum likelihood esti-
mator is unbiased and its variance equals the CR bound.
In the following we will thus consider m to be suffi-
ciently large.
In the case of a single output measurement, the CR

bound is ��CR ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFc½�̂; ��

p
, where

FIG. 1 (color online). (a) Scheme of a Mach-Zehnder interfer-
ometer with input state given by Eq. (1) and number of particles
detection in a single output port. The parameter � is the relative
phase shift among the two arms of the interferometer. (b) Phase
sensitivity gain gQCR � �10log10ð��QCR=��snÞ of Eq. (2) with
respect to the shot-noise limit ��sn ¼ 1=

ffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na þ N

p
. Different

lines refer to different values of N. The horizontal lines [corre-
sponding to ��QCR=��sn ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p
, Eq. (3)] are saturated

in the limit na � N.
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Fc½�̂; �� ¼
Xþ1

Nc¼0

1

PðNcj�Þ
�
dPðNcj�Þ

d�

�
2

(5)

is the Fisher information. In the ideal noiseless case, the
highest value of the Fisher information, Eq. (5), is obtained
at � ¼ 0. The explicit calculation at � � 0, gives
Fc½�̂; �� ¼ 2naN þ na þ N þOð�2Þ [22]: the Fisher in-
formation saturates the quantum Fisher information,

Fc½�̂; � ¼ 0� ¼ FQ½�̂; Ĵy�, and the CR bound saturates

Eq. (2). A plot of ��CR as a function of � is shown in
Fig. 2 for different values of N. The uncertainty ��CR
strongly depends on � and sub-shot noise is obtained in a
wide phase interval which slowly shrinks by increasing N.
Finite fluctuations in the phase uncertainty are reduced by
increasing na and are a consequence of the oscillating
properties of the conditional probabilities.

The value of the Fisher information at � ¼ 0 is unde-
termined (0=0) although the limit exists due to a perfect
compensation between numerator and denominator of
Eq. (5) [22]. Therefore, this limit case is extremely fragile
in the presence of noise and decoherence as, for instance,
detection noise. We simulate detection noise by replac-
ing the ideal probabilities PðNcj�Þ with ~PðNcj�Þ ¼P

~Nc
PðNcj ~NcÞPð ~Ncj�Þ, where PðNcj ~NcÞ is the probability

to obtain the result Nc when ~Nc particles truly hit the
detector [28]. This can be typically modeled as an unbiased

Gaussian, PðNcj ~NcÞ � e�ðNc� ~NcÞ2=2�2
, where � vanishes in

the ideal limit. We assume, for simplicity, that the detection
noise parameter � does not depend on Nc and ~Nc. The
CR bound, taking into account this noise, becomes

��CR ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m ~Fc½�̂; ��

q
, where ~Fc½�̂; �� is obtained from

Eq. (5) by replacing PðNcj�Þ with ~PðNcj�Þ. Notably,
~Fc½�̂; � ¼ 0� ¼ 0 when �> 0: the point � ¼ 0, which
was the optimal phase value in the ideal case, becomes

the worst working point even in the presence of infinitesi-
mally small detection noise. An analogous effect has been
experimentally observed in Ref. [8]. As shown in Fig. 2,
the optimal phase value depends on N and �. Interestingly,
due to the properties of ~Fc½�̂; ��, our scheme proves the
most robust in the two extreme limits N � 1 and N�1. In
the case N�1, sub-shot noise is obtained for � & 3. In the
case N � 1, numerical calculations suggest that sub-shot

noise is obtained for � & 0:6
ffiffiffiffi
N

p
.

Furthermore, it is interesting to calculate the phase
sensitivity of the MZ configuration where both output ports

are monitored. The CR bound is now given by ��CR ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFcd½�̂; ��

p
, where the Fisher information is

Fcd½�̂; �� ¼
X
Nc;Nd

1

PðNc; Ndj�Þ
�
dPðNc; Ndj�Þ

d�

�
2
: (6)

By using a Cauchy-Schwarz inequality, it is possible to
prove [22] that Fcd½�̂; �� � Fc½�̂; ��, for any � and

any �̂. In our case, since Fc½�̂; � ¼ 0� ¼ FQ½�̂; Ĵy� and

Fcd½�̂; �� 	 FQ½�̂; Ĵy�, we also have Fcd½�̂; � ¼ 0� ¼
FQ½�̂; Ĵy�. It is also possible to see that Fcd½�̂; �� does

not depend on � [22]. Measuring the number of particles
at both output ports thus provides a Cramer-Rao phase

uncertainty ��CR ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFcd½�̂; ��

p
saturating the QCRB

at any value of the phase shift. This is confirmed by
numerical calculations, as shown in Fig. 2.
In the presence of a superselection rule forbidding

coherences between different total number of particles
[29], sub-shot-noise phase uncertainty in a linear interfer-
ometer is directly related to the entanglement properties of
the input state [3,4]. The definition and presence of entan-
glement depends on a specific, chosen, partition of the
Hilbert space. In interferometry, states which are only

FIG. 2 (color online). Mach-Zehnder phase uncertainty as a function of � for the input states Eq. (1). Here �̂a is a coherent state
(�n ¼ hnj�̂ajni ¼ nnae

�na=n!) with na ¼ 1000 and different panels refer to different values of N. Thick solid line is

the noiseless case obtained by measuring the number of particles in the output port c. In this case ��CR=��sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihn̂i=Fc½�̂; ��

p
where Fc½�̂; �� is given by Eq. (5) and hn̂i ¼ na þ N. Thin solid lines are obtained by including detection noise (parametrized by �),

��CR=��sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn̂i= ~Fc½�̂; ��

q
. The thick horizontal dashed line is obtained by the noiseless measurement of the number of particles at

both the output ports. In this case ��CR=��sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihn̂i=Fcd½�̂; ��

p
where Fcd½�̂; �� is given by Eq. (6). The shaded region highlights the

attainable sub-shot-noise phase uncertainty, which is limited from below by the QCR bound, Eq. (2).
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classically correlated in the particles provide, at best, the
shot-noise limit [3,4]. Notice that the linear interferometric
transformations, as the MZ case, are local in the particles
and, therefore, no particle entanglement is created by the

device. The inequality FQ½�̂inp; Ĵy�> hn̂i recognizes the

generic two-mode input �̂inp, of average hn̂i particles, as
particle entangled and useful for sub-shot-noise interfer-
ometry. A different description of the system is provided
by mode entanglement. The disadvantage of this point of
view is that mode entanglement may be modified by linear
SU(2) operations, such as a beam splitter, which makes it
difficult to quantify as a resource. Moreover, mode entan-
glement is, in general, not a good criterion to single out
states allowing for phase estimation sensitivities higher
than the classical shot noise. An example is Eq. (1), which
is mode separable but particle entangled and provides a
sub-shot-noise phase uncertainty. To demonstrate this
point, we notice, by following [4], that

FQ½�̂inp; Ĵy� � hn̂i=�2
sm; (7)

where

�2
sm � hn̂ið�½n̂� Ĵz�Þ2=hĴxi2: (8)

It is possible to see that coherent single-mode number
squeezing implies �2

sm < 1. Indeed, let us consider a ge-
neric mode-separable input state �̂inp ¼ �̂a � �̂b with

na�nb (such that hn̂i¼naþnb�na) and number coher-

ences in both modes, hâi � ffiffiffiffiffi
na

p
(hb̂i � ffiffiffiffiffi

nb
p

): in this case,

�2
sm < 1 as soon as �̂b is number squeezed [16]. According

to Eq. (7), �2
sm < 1 implies FQ½�̂inp; Ĵy�> hn̂i, which guar-

antees that �̂inp is particle entangled [4]. For the extreme

single-mode number squeezing given by Eq. (1), the quantity
�2
sm is undetermined (0=0). However, the direct calculation

of FQ½�̂;Ĵy� (see Ref. [22]) shows that FQ½�̂;Ĵy�>Nþna,

and therefore �̂ is particle entangled, as soon as Nna > 0;
i.e., none of the two modes is in a vacuum state.

It should be noticed that Eq. (8) resembles the familiar

spin-squeezing parameter �2 ¼ hn̂ið�ĴuÞ2=ðhĴvi2 þ hĴwi2Þ
[14], where u, v, and w are three mutually orthogonal unit
vectors. Indeed, �2

sm ¼ �2 for u ¼ z and a proper choice of
v and w, when there are no fluctuations in the total number
of particles. Analogously to the spin-squeezing parameter,
Eq. (8) is metrologically relevant: states satisfying �2

sm < 1
reach a sub-shot-noise phase uncertainty at � ¼ 0, as it
can be shown by an error propagation analysis [22]. In
general, number squeezing in a single mode does not
necessarily imply spin squeezing. We show this by calcu-
lating �2 for the state (1). It is straightforward to obtain that

�2 ¼ hn̂ihĴ2xi
hĴzi2 þ hn̂ið�ĴzÞ2

hĴzi2 dðu; v; wÞ, where dðu; v; wÞ � 0 is a

positive function of the angles defining u, v,wwith respect
to the x, y, z axis. The spin moments calculated for

Eq. (1) are hĴx;yi ¼ 0, hĴ2x;yi ¼ ð2Nna þ N þ naÞ=4, and
hĴzi ¼ ðna � NÞ=2. Therefore, �2�ðnaþNÞð2NnaþNþnaÞ

ðna�NÞ2 �1,

reaching its minimum (�2 ¼ 1) when one of the input
mode is in the vacuum state (N ¼ 0 or na ¼ 0). This
demonstrates that (1) is not spin squeezed for any choice
of u, v, w.
In conclusion, we have shown that squeezing the popu-

lation fluctuations in a single input mode of a Mach-
Zehnder interferometer, while leaving the other input in
an arbitrary nonvacuum state, creates a particle entangled
state useful to reach sub-shot-noise phase uncertainties
down to the Heisenberg limit. Since our scheme uses a
classical input mode, it is particularly feasible to create
particle-entangled input states of large intensity, which are
an essential ingredient in several interferometric techno-
logical applications as atomic clocks and gravitational
wave detectors.
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Nature (London) 464, 1165 (2010); M. F. Riedel, P. Böhi,
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