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Thermal or chaotic light sources emit radiation characterized by a slightly enhanced probability of

emitting photons in bunches, described by a zero-delay second-order correlation function gð2Þð0Þ ¼ 2.

Here we explore photon-coincidence counting statistics of thermal cavities in the ultrastrong coupling

regime, where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. We

find that, depending on the system temperature and coupling rate, thermal photons escaping the cavity can

display very different statistical behaviors, characterized by second-order correlation functions approach-

ing zero or greatly exceeding two.
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Thermal radiation has a special place in modern physics.
In the search for a solution to the discrepancies between the
observed energy spectrum of thermal radiation and the
predictions of classical theory, Planck was led to introduce
the revolutionary concept of quanta [1]. Thermal or chaotic
light sources emit radiation that is characterized by an
enhanced probability of emitting photons in bunches [2].
In the course of the successful attempt to explain this
effect, Glauber established the basis of quantum optics
[3,4]. Even more recently the study of thermal emission
has continued to provide amazing results. A thermal light-
emitting source is often presented as a typical example of
an incoherent source. However, it has been shown that the
field emitted by a thermal source made of a polar material
is enhanced by more than 4 orders of magnitude and
displays first-order coherence in the near-field zone [5].
Moreover, by introducing a periodic microstructure into
such a polar material, a thermal infrared source can be
fabricated that displays first-order coherence over large
distances [6]. While first-order coherence and spectral
properties of thermal sources can be manipulated and
tailored, their second-order coherence is known to be
completely absent [4] resulting in the small bunching

described by gð2Þð0Þ ¼ 2.
Here we investigate photon-coincidence counting

statistics of thermal cavities in the ultrastrong coupling
regime, where the strength of the interaction g between
an emitter and the cavity photons becomes comparable to
the transition frequency of the emitter !x or the frequency
of the cavity mode !0. Ultrastrong light-matter interac-
tions have recently been achieved both in semiconductor
and superconducting systems where exceptionally high
field amplitudes for the photons and emitters with very
large dipole moments can be realized [7–12]. These struc-
tures are attracting increasing interest due to the possibility
of manipulating the physical properties of the cavity quan-
tum electrodynamic ground state.

The photon statistics of chaotic sources (like thermal
cavities) and lasers can usually be explained classically. In
contrast, strongly nonlinear photonic systems can emit
individual photons well separated in time from each other
when excited coherently or operating very far from thermal
equilibrium. For the systems considered so far, such a
scenario is however known to not persist when the coupled
system is driven by thermal noise induced by reservoirs at
finite temperature. Indeed, the standard quantum optics
master equation (ME), generally used to study the dynam-
ics of cavity QED systems [13], predicts for such systems

gð2Þð0Þ ¼ 2 independently of temperature and coupling
strength. The interaction between atoms and cavity pho-
tons is most often neglected when considering the coupling
of this system to an environment. Recently it has however
been shown that this simplification, which leads to the
standard quantum optics ME, can generate unphysical
effects in the ultrastrong coupling regime [14]. Another
key issue is the failure of standard quantum optical normal-
order correlation functions to describe photodetection
experiments for such systems [15–17]. The theoretical
treatment of this regime thus requires a description that
goes beyond the standard techniques of quantum optics.
Exploiting generalized correlation functions as intro-

duced in Ref. [16] and a ME that fully takes into account
the qubit-resonator coupling [14,18], we investigate the
photon-coincidence counting statistics of thermal sources
for arbitrary light-matter coupling. For this purpose we
consider a single mode resonator coupled to a two-level
quantum emitter where each subsystem is coupled to
independent thermal baths of harmonic oscillators at a
common temperature T. We concentrate on the zero-
detuning !0 ¼ !x and low-temperature cases, where
more striking deviations from the standard results appear.
We moreover have corroborated the generality of our find-
ings by confirming that similar results are found for one
cavity mode coupled to multiple emitters or one emitter
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coupled to multiple cavity modes (see the Supplemental
Material [19]).

A particularly well suited technology for such an ex-
periment is superconducting circuits [20,21] which have
recently emerged as an excellent platform for microwave
on-chip quantum-optics experiments and where second-
order correlation function measurements for quantum
[22–24] and low temperature thermal fields [25] have
been performed using quadrature amplitude detectors.

Model.—The cavity QED system we explore consists of
a single-mode resonator that interacts with a two-level
system (TLS). This system can be described by the Rabi
Hamiltonian (assuming @ ¼ 1),

H ¼ !0a
yaþ!x�

þ�� þ gðaþ ayÞð�� þ �þÞ; (1)

where !0 and !x are the cavity and TLS bare frequencies,
g is the coupling strength, while a (ay) denotes the anni-
hilation (creation) operator for the cavity and �� (�þ) is
the lowering (raising) operator for the TLS. Since we are
interested in probing photon-coincidence statistics for
arbitrary light-matter interactions where the contribution
of counter-rotating terms cannot be neglected, we do not
make use of the rotating wave approximation (RWA) [26].
Recently, it was shown that in the limit of very large
coupling, the ground state and the first excited state of
this system can become quasidegenerate [28–30].

In order to study thermal emission as well as the
statistics of thermal photons we calculate the normal-
order correlation functions of the output field. Standard
normal-order correlation functions were recently shown to
not correctly describe the emission properties and photon
statistics of systems in the ultrastrong coupling regime [16]
as they would, for example, predict an unphysical stream
of output photons even for a zero-temperature system,
hayaiT¼0 ¼ Tr½aya�T¼0� � 0. Following Ref. [16], we
here employ correlation functions for the output fields
that are valid for an arbitrary coupling strength by express-
ing the cavity field X ¼ �iX0ða� ayÞ (X0 is the rms zero-
point field amplitude) in the atom-cavity dressed basis. In
particular, the setup we have in mind is equivalent to the
emission of a thermalized black box, whose output is
coupled to the vacuum of a one-dimensional waveguide.
In this case, the output and input operators aoutðtÞ and
avacin ðtÞ obey the relation aoutðtÞ ¼ avacin ðtÞ � i

ffiffiffiffiffiffi
�a

p _Xþ [16].

Here Xþ [X� ¼ ðXþÞy] is the positive (negative)
frequency component of the cavity field X, which can be
derived by expanding the respective operators in the
dressed state basis, namely the eigenstates jji of H as in
Eq. (1) ordered according to increasing eigenenergies !j.

Specifically, the time derivative of Xþ can be expressed as
_Xþ ¼ �i

P
j;k>j�kjXjkjjihkj, where Xjk ¼ hjjXjki and

�kj ¼ !k �!j. According to these input-output relations

and for input fields in vacuum, the normalized second-
order correlation function for the output field reads

gð2Þð�Þ ¼ lim
t!1

h _X�ðtÞ _X�ðtþ �Þ _Xþðtþ �Þ _XþðtÞi
h _X�ðtÞ _XþðtÞi2 : (2)

Results.—The thermal-equilibrium zero-delay correla-

tion function gð2Þð0Þ can be directly calculated from the
thermal equilibrium density operator [31]. For a system in
thermal equilibrium, statistical properties are related to the
density matrix of the canonical ensemble �T that is the
most general way to describe such thermalized interacting
systems. In the basis where H is diagonal, �T reads

�T ¼ e�ð�j=kBTÞ

Z
�ij; (3)

where �j is the jth eigenvalue of H, �ij is the Kronecker

delta, and Z ¼ P
j expð��j=kBTÞ is the partition function.

Figure 1 shows the thermal-equilibrium zero-delay cor-

relation function gð2Þð0Þ as a function of the effective
coupling g=!0 and temperature for zero detuning (!0 ¼
!x). The calculated gð2Þð0Þ exhibits striking differences

from the standard value of gð2Þ ¼ 2. Of particular interest
is the region with large effective coupling g=!0 > 0:4 and

low temperature kBT=!0 < 0:1 where gð2Þð0Þ � 1. This
highly nonclassical behavior of thermal photons opens pros-
pects towards the realization of thermal sources of single
photons in circuit QED. This anomalous behavior originates
from the tendency of the interacting quantum system to
converge towards vacuum degeneracy for large couplings.
Specifically for increasing coupling the energy of the first
excited state converges towards that of the ground state,
while the other energy levels remain well separated from
that doublet [see Fig. 2(b)]. Hence, at sufficiently low
temperature, only the first excited state is significantly popu-
lated by thermal noise [ð!i�!0Þ=kT is non-negligible only

FIG. 1 (color online). gð2Þð0Þ plotted as a function of the
temperature and coupling strength. The results are obtained on
resonance (!0 ¼ !x) and for a steady state with cavity and TLS
in thermal equilibrium, i.e., Ta ¼ Tx. Notably, in thermal equi-
librium, statistical properties are independent of the damping
rates. For comparison we show the plane of gð2Þð0Þ ¼ 2 which
indicates the value that would result from a conventional ME,
where a RWA is performed.
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for i ¼ 1]. At the onset of vacuum degeneracy, the ground
and first excited state are quantum superpositions with multi-
photon components [29] and naively one might expect to
observe bunching effects. However such photons are mostly
virtual and the use of generalized normal-order correlation
functions shows that the transition j1i ! j0i can only emit
one physical photon at a time.

For large effective couplings and higher temperatures

gð2Þð0Þ becomes larger than the standard value gð2Þð0Þ ¼ 2.
Also this behavior can be understood from the spectrum of
the Hamiltonian H in Eq. (1). As H conserves the parity of
the number of TLS and cavity excitations, its eigenstates
either contain an odd or an even number of such excitations
but not both. The single excitation decays associated with
_Xþ can thus only occur between eigenstates with different
parities. As the energy levels that converge to n!0 for
g ! 0 [cf. Fig. 2(b)] contain n excitations, the decay
process j2i ! j1i cannot occur for g=!0 � 1. At g=!0 ’
0:45 however a crossing between the second and third
excited level occurs and beyond this point the cascaded
decay j2i ! j1i ! j0i is possible [32]. For temperatures
that are sufficiently high to appreciably populate these
levels, such cascaded decays can lead to pronounced

bunching with gð2Þð0Þ> 2 (cf. Fig. 1). Since the energies
of excited states decrease as g=!0 grows, their population
increases for a given temperature.

An overview of the behaviors of gð2Þð0Þ is shown in the
contour plot of Fig. 2, where four different regions are
displayed: (i) a region for small g=!0 (green) where the

standard thermal result gð2Þ � 2 is recovered (here 1:999<

gð2Þð0Þ< 2) and which broadens for increasing tempera-
tures, (ii) a sub-Poissonian or nonclassical region with

gð2Þ < 1 (blue) in the ultrastrong coupling regime and for
sufficiently low temperatures, (iii) a region with an inter-

mediate regime (gray) with 1< gð2Þð0Þ< 2, and (iv) a
super-Poissonian region (red) beyond the standard value

of gð2Þ ¼ 2 for very large coupling and higher tempera-

tures. We note here that a calculation of gð2Þð0Þ within the
RWA and using the standard quantum optics ME [13]

would always yield the value gð2Þð0Þ ¼ 2, regardless of
the coupling strength and the temperature.
While a zero-delay correlation function can be directly

inferred from the thermal density operator, a description
of the time dependent dynamics of the open quantum
system is required to calculate the time-delayed second-

order correlation function gð2Þð�Þ. A viable description of
system-bath interactions typically requires an expansion in
the system bath coupling. A suitable way to perform this
perturbative expansion consists in writing the Hamiltonian
in the basis of its eigenstates jji [18]. In this way we obtain
the following ME [14,33],

_�ðtÞ ¼ i½�ðtÞ; H� þLa�ðtÞ þLx�ðtÞ; (4)

where La and Lx are Liouvillian superoperators describ-
ing the losses and the thermal feeding of the system.

They read Lc�ðtÞ¼
P

j;k>j�
jk
c �nð�kj;TÞD½jkihjj��ðtÞþ

P
j;k>j�

jk
c ð1þ �nð�kj;TÞÞD½jjihkj��ðtÞ for c¼a, �� with

D½O�� ¼ 1
2 ð2O�Oy � �OyO�OyO�Þ. The relaxation

coefficients �jk
c ¼ 2�dcð�kjÞ�2

cð�kjÞjCc
jkj2 depend on the

spectral density of the baths dcð�kjÞ and the system-bath

coupling strength �cð�kjÞ at the respective transition fre-

quency �kj ¼ !k �!j as well as on the transition coef-

ficients Cjk ¼ �ihjjðc� cyÞjki (c ¼ a, ��). �nð�kj; TÞ is
the thermal population at frequency�kj and temperature T.

In all examples reported in this work, we consider a cavity
that couples to the momentum quadratures of fields in one-
dimensional output waveguides, assuming that the spectral
density dcð�kjÞ is constant and �2

cð�kjÞ / �kj. Hence the

relaxation coefficients reduce to �jk
c ¼ �cð�kj=!0ÞjCc

jkj2,
where �c are the standard damping rates. These assump-
tions correspond to typical experimental settings, e.g., in
circuit QED. In the ME Eq. (4) we neglect contributions of
dephasing noise and Lamb shifts as they do not affect
significantly our findings. A first result worth mentioning
is that the steady state solution of Eq. (4) reproduces the
thermal state of Eq. (3) that is independent of the damping
rates. This confirms that the present approach is able to
correctly describe the system’s thermalization and thus
corroborates the accuracy of Eq. (4). We solve Eq. (4)

using �T as an initial condition to calculate gð2Þð�Þ via
the quantum regression theorem [34].

Figure 3 displays gð2Þð�Þ for the temperatures and cou-
plings corresponding to the reported markers in Fig. 2 and
�a ¼ �x ¼ 0:01!0. Notably, oscillations appear in the
gray and green regions. These arise from interferences of

FIG. 2 (color online). (a) Contour plot of gð2Þð0Þ calculated
with the same parameters as Fig. 1. Here one can distinguish four
regions: (i) green, with 1:999< gð2Þð0Þ< 2 corresponding to the
standard thermal result, (ii) gray, for 1< gð2Þð0Þ< 1:999,
(iii) blue, with the sub-Poissonian values gð2Þð0Þ< 1, and
(iv) red, with gð2Þð0Þ> 2. The markers identify data points that
we investigate further to characterize the different behaviors of
gð2Þð�Þ. Their (g=!0, kBT=@!0) values are diamond (0.1, 0.2),
triangle (0.2, 0.1), square (0.5, 0.07), circle (0.9, 0.15). (b) Energy
eingenvalues of H as in Eq. (1) as a function g=!0.
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the possible decay channels. In fact, for these values of the
coupling strength, the separation between the energy levels
is not high enough to suppress thermal occupation of
higher excited states. Hence decays from upper energy
manifolds into lower excited states are possible. In this
way, e.g., the third excited energy level can decay into the
second or into the first, and interferences of these possible
decays result in the observed oscillating behavior. This
explanation is corroborated by the fact that the frequency
of the oscillations corresponds exactly to �12, i.e., the
energy difference between the first and the second excited

state ofH. Yet, in the blue region, gð2Þð�Þ is almost zero and
behaves as for a usual TLS; moreover, the oscillations in �
are suppressed due to the low thermal noise and great
separation between the energy eigenvalues. Instead, in

the red region, gð2Þð�Þ shows a slow decay for large �which
is due to the fact that the lifetime of an excitation in the
state j1i is a lot longer than that of an excitation in the state
j2i. This difference in lifetimes is obvious from widths of
the corresponding lines in the spectrum (see Fig. 4). Hence
after the emission of a photon from the decay j2i ! j1i, the
probability of detecting a second photon that originates
from the decay j1i ! j0i is substantial for a long delay

range �. For this reason, gð2Þð�Þ in the red region remains
bunched for such a long time. This behavior is a conse-
quence of the spectral density of the bath that, being a
linear function of the frequencies, tends to narrow the
spectral linewidth of the lower resonances.

Deeper insights into the cascade processes involving
transitions with different frequencies can be obtained

from the frequency filtered second-order cross-correlation
functions [35,36]. Here we calculate them for the circle-
marker case considering the frequencies �2;1 and �1;0,

gð2Þ12;10ð�Þ ¼ lim
t!1

hT _X�
21ðtÞ _X�

10ðtþ �Þ _Xþ
01ðtþ �Þ _Xþ

12ðtÞi
h _X�

21ðtÞ _Xþ
12ðtÞih _X�

10ðtÞ _Xþ
01ðtÞi

;

where T is the time-ordering operator that positions
the operators at earlier times on the outer places in the
expectation value and _Xþ

jk ¼ i�jkXjkjjihkj with k > j. For

� > 0, gð2Þ21;10ð�Þ shows pronounced bunching due to the

cascaded decay process j2i ! j1i ! j0i. For � < 0 on

the other hand, gð2Þ21;10ð�Þ is antibunched as after detecting

a photon with frequency �1;0 the system needs to be re-

excited before a photon at frequency �2;1 can be emitted

and detected [37].
Thermal emission is also characterized by its power

spectrum, i.e., the Fourier transform of the two-time cor-
relation Sð!Þ / limt!12Re

R1
0 h _X�ðtÞ _Xþðtþ �Þiei!�d�.

We exploit again the quantum regression theorem to cal-
culate the relevant two-time correlation function. Figure 4
shows Sð!Þ for the same parameters as used in Fig. 3 and
the corresponding values of temperature and couplings for
the different markers as introduced in the caption of Fig. 2.
As expected the heights of the spectra increase for in-
creasing temperature. Moreover the resonances have
(i) different linewidths, as one can see from the definition
of the damping rates, and (ii) different heights. The latter is
mainly a consequence of the thermal feeding. For a fixed
temperature, the thermal occupation of a spectral reso-
nance (i.e., its height) is determined by �nð!; TÞ that
increases as the frequency ! of the resonance decreases.
The presence of two different decay times in the example
with the dot marker becomes apparent via the different
linewidths of the resonances contributing to the signal
(see Fig. 4). Finally, the effects described here could
also be measured by populating the system with a

FIG. 3 (color online). gð2Þð�Þ (upper panel) and gð2Þ21;10ð�Þ
(lower panel) calculated for couplings and temperatures corre-
sponding to the markers in Fig. 2. Here the damping rates are
�a ¼ �x ¼ 0:01!0.

FIG. 4 (color online). Emission spectra calculated for couplings
and temperatures corresponding to the markers in Fig. 2 and for
�a ¼ �x ¼ 0:01!0. Spectra heights are normalized by the maxi-
mum value of the lowest temperature spectrum (square marker).
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quasithermal field distribution realized by mixing a fixed
frequency microwave tone with noise sources of different
bandwidths [24].
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