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1Laboratoire Kastler-Brossel, École Normale Supérieure, CNRS and UPMC, 24 rue Lhomond, 75005 Paris, France
2Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Wien, Austria

3Department of Physics, Bar-Ilan University, Ramat-Gan, 52900 Israel
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We study the lifetime of a Bose gas at and around unitarity using a Feshbach resonance in lithium 7. At

unitarity, we measure the temperature dependence of the three-body decay coefficient L3. Our data follow

a L3 ¼ �3=T
2 law with �3 ¼ 2:5ð3Þstatð6Þsyst � 10�20 ð�KÞ2 cm6 s�1 and are in good agreement with our

analytical result based on zero-range theory. Varying the scattering length a at fixed temperature, we

investigate the crossover between the finite-temperature unitary region and the previously studied regime

where jaj is smaller than the thermal wavelength. We find that L3 is continuous across the resonance, and

over the whole a < 0 range our data quantitatively agree with our calculation.
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Recent advances in manipulating cold atomic vapors
have enabled the study of Fermi gases at the unitary limit
where the scattering length a describing two-body interac-
tions becomes infinite. It has been demonstrated both
experimentally and theoretically that in this limit the system
is characterized by a scale invariance leading to remarkably
simple scaling laws [1]. In contrast, most experimental
results on Bose-Einstein condensates were obtained in the
weakly interacting regime. Recent experimental results on
bosons near Feshbach resonances have revived the interest
in strongly interacting bosons [2]: the development of
experimental tools has enabled a precise test of the
Lee-Huang-Yang corrections [3,4], and several theoretical
papers have studied the hypothetical unitary Bose gas at
zero [5–8] or finite [9] temperature. The strongly interacting
Bose gas is one of the most fundamental quantum many-
body systems, yet many open questions remain. Examples
include the prediction of weakly bound Efimovian droplets
[10,11], the existence of both atomic and molecular super-
fluids [12], and the creation of strongly correlated phases
through three-body losses [13].

Experimental investigation of ultracold bosons near
unitarity has been hampered by the fast increase of the
three-body recombination rate close to a Feshbach reso-
nance [14,15]. In this case, the number of trapped atoms
NðtÞ follows the usual three-body law

_N ¼ �L3hn2iN; (1)

where hn2i ¼ R
d3rn3ðrÞ=N is the mean square density

and L3 is the three-body loss rate constant. In the zero-
temperature limit L3 increases as @a4=m [16] multiplied
by a dimensionless log-periodic function of a revealing
Efimov physics [17–26]. At finite temperature, L3 saturates
when a becomes comparable to the thermal wavelength

�th ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p
, and L3 � @a4=m� @

5=m3ðkBTÞ2
[9,27,28]. This saturation suggests that a non-quantum-
degenerate Bose gas near a Feshbach resonance will main-
tain thermal quasiequilibrium [9]. Indeed, in this regime,
jaj * �th and n�3

th � 1. Thus, the elastic collision rate
�2 / @�thn=m is much higher than the three-body loss rate
�3 ¼ L3n

2 / @�4
thn

2=m. Experimental and numerical evi-
dence for a saturation of L3 was reported in Refs. [3,22,27].
A theoretical upper bound compatible with this scaling was
derived in Ref. [29] assuming that only the lowest three-body
hyperspherical harmonic contributes, an assumption which
breaks down when jaj exceeds �th.
In this Letter, we measure the temperature dependence

of the unitary three-body recombination rate and find
agreement with a L3 / 1=T2 scaling law. In a second set
of measurements performed at constant temperature, we
study L3 versus a. We show how this function smoothly
connects to the zero-temperature calculations when
jaj � �th. These observations are explained by a general
theoretical result for L3ða; TÞ, exact in the zero-range
approximation, that we derive in the second part. Our
theory allows for a complete analytic description of the
unitary case and, in particular, predicts (weak) log-periodic
oscillations of the quantity L3T

2. Our findings quantify the
ratio of good-to-bad collisions in the system and provide
solid ground for future studies of strongly interacting Bose
gases. Furthermore, on the a < 0 side, experiments have
so far detected a single Efimov trimer [3,23–25,30]. Our
analysis predicts that a second Efimov trimer of very
large size should be detectable in 7Li at temperatures on
the order of a few microkelvins.
Our experimental setup was presented in Ref. [4]. After

magneto-optical trapping and evaporation in an Ioffe
magnetic trap down to ’30 �K, ’2� 106 7Li atoms
are transferred into a hybrid magnetic and dipole trap in

PRL 110, 163202 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

19 APRIL 2013

0031-9007=13=110(16)=163202(5) 163202-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.163202


the state j1; 1i. The transverse confinement is obtained by a
single laser beam of waist 43ð1Þ �m and wavelength
1073 nm, while the longitudinal trapping is enhanced by a
magnetic field curvature. The resulting potential has a cylin-
drical symmetry around the propagation axis of the laser and
is characterized by trapping frequencies 0:87<!�=2�<

3:07 kHz and 18<!z=2�< 49 Hz. Further cooling is
achieved by applying a homogeneous magnetic field B ’
718 G for which the scattering length is ’ 200a0, and
decreasing the depth of the trapping potential down to a
variable value U0 allowing us to vary the final temperature
of the cloud. Afterwards, the dipole trap is recompressed to
a value U >U0, to prevent significant atom loss due to the
enhanced evaporation rate; see below. At each T we choose
U so as to maintain the temperature constant during the
three-body loss rate measurement. Finally, the magnetic
field is ramped in 100–500 ms to B0 ’ 737:8ð3Þ G, where
the scattering length a diverges [4]. We then measure the
total atom number N remaining after a variable waiting
time t and the corresponding T, using in situ imaging of
the thermal gas.

Our data are limited to the range of temperature 1 �
T � 10 �K. For T * 1 �K, the rate �3 ¼ � _N=N remains
small with respect to other characteristic rates in our
cloud (elastic scattering rate, trapping frequencies), which
guarantees that a thermal quasiequilibrium is maintained.
We check that for these parameters the in situ integrated
density profile is indeed Gaussian, and we use it to extract
the temperature of the cloud, found to be in agreement with
that of time of flight. The peak phase-space density varies
within 0:07� 10�2 < n0�

3
th < 1:1� 10�2. A typical time

dependence of N and T is shown in Fig. 1. The time
dependence of the atom number is fitted using the usual
three-body recombination law Eq. (1) [31]. For a nondegen-
erate gas of temperature T, the density profile is Gaussian,

and we have hn2i ¼ N2AðTÞ ¼ N2ðm �!2=2�
ffiffiffi
3

p
kBTÞ3, with

�! ¼ ð!2
�!zÞ1=3 being themean trapping frequency.We then

have

_N ¼ �L3ðTÞAðTÞN3: (2)

Assuming constant temperature, integrating Eq. (2) gives

NðtÞ ¼ Nð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2AðTÞL3ðTÞN2ð0Þtp ; (3)

which we use as a fitting function to analyze NðtÞ, and
extract L3ðTÞ as shown in Fig. 1.
Because of their n3=T2 dependence, three-body losses

preferentially remove atoms of low kinetic energy and
those located at the center of the trap where the density
is the highest and potential energy is the smallest. As a
result, three-body loss events heat up the cloud [16]. We
ensure constant temperature by operating with a typical
trap depth U ’ �kBT with 6 � � � 8, for which the re-
sidual evaporation then balances recombination heating;
see Fig. 1(b). This ensures that L3 is time independent, but,
as a drawback, evaporation contributes to losses. To quan-
tify the relative importance of evaporative and three-body
losses, we first note that an atom expelled by evaporation
removes on average an energy ’ð�þ �ÞkBT, where,
taking � from Ref. [32], we follow Ref. [33]. Typically,
we have � ’ 0:68 for � ¼ 6 and � ’ 0:78 for � ¼ 8 [34].
In comparison, each three-body event leaves on average an
excess heat of �kBT per particle. Extending the derivation
of Ref. [16] to the case of an energy dependent three-body
loss rate / E�2, we obtain � ¼ 5=3 [34]. The energy
balance required to keep the temperature constant thus
implies that the evaporation rate is ’�=ð�þ �� 3Þ times
smaller than the three-body loss rate. Neglecting this effect
would induce a systematic overestimation of L3 of about
50% for � ¼ 6 and 30% for � ¼ 8. Therefore, we apply
this systematic correction to our data.
The temperature dependence of L3 obtained from our

measurements at unitarity is shown in Fig. 2. It is well fit by
the scaling law L3ðTÞ ¼ �3=T

2, with �3 ¼ 2:5ð3Þstat �
10�20 ð�KÞ2 cm6 s�1 as the best-fit value. In order to
discuss the systematic uncertainty of this measurement,
we note that the quantity L3T

2 scales in all experimental
parameters identically to the thermodynamic quantity
ð�2=PÞ2 of a zero-temperature Bose-Einstein condensate
with chemical potential� and pressure P [34]. We use this
relation to calibrate our experimental parameters [4] and
obtain a systematic uncertainty on �3 of � 25% resulting
in �3 ¼ 2:5ð3Þstatð6Þsyst � 10�20 ð�KÞ2 cm6 s�1.

We now study the a dependence of L3 on both sides of
the resonance by employing the same experimental proce-
dure as in the unitary case. We tune the scattering length
while keeping the temperature within 10% of 5:9 �K; see
Fig. 3. The excess heat � entering in the correction now
depends on the value of ka. The correction is applied to
all data points (filled circles) except in the range 1500a0 <
a< 5000a0 (open circles), where the assumptions of our
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FIG. 1 (color online). Time dependence of the atom number
(a) and temperature (b) for U ¼ �kBT, with T ¼ 5:2ð4Þ �K,
� ¼ 7:4, and (uncorrected) L3 ¼ 1:2ð2Þstat � 10�21 cm6 s�1.
The dotted line shows the long time t�1=2 dependence of the
number of atoms.
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model are not applicable [34]. In the limit jaj � �th, we
observe that L3ðaÞ saturates to the same value on both sides
of the resonance. In the opposite limit jaj � �th, our data
connect to the zero-temperature behavior [20] studied
experimentally in Refs. [22–26]. On the a < 0 side, the
dashed line is the zero-temperature prediction for L3 from
Ref. [20]. We clearly see that finite temperature reduces the
three-body loss rate. On the a > 0 side, temperature effects
become negligible for a < 2000a0, as testified by our mea-
surements performed on a low-temperature Bose-Einstein
condensate (green squares), which agree with the total
recombination rate to shallow and deep dimers calculated
at T ¼ 0 in Ref. [20] (dashed line). The data around uni-
tarity and on the a < 0 side are seen to be in excellent
agreement with our theory Eq. (4) described below.

In order to understand the dependence L3ða; TÞ theoreti-
cally, we employ the S-matrix formalism developed in
Refs. [20,35,36]. According to themethod, at hyperradiiR �
jaj one defines three-atom scattering channels (i ¼ 3; 4; . . . )
for which the wave function factorizes into a normalized

hyperangular part �iðR̂Þ and a linear superposition of the

incoming, R�5=2e�ikR, and outgoing, R�5=2eþikR, hyperra-
dial waves. The channel i ¼ 2 is defined for a > 0 and
describes the motion of an atom relative to a shallow dimer.
The recombination or relaxation to deep molecular states
(with a size of order the van der Waals range Re) requires
inclusion of other atom-dimer channels. In the zero-range
approximation, valid when Re � Rm � minð1=k; jajÞ, the
overall effect of these channels and all short-range physics
in general can be taken into account by introducing a single
Efimov channel (i ¼ 1) defined for Re � R � Rm: the
wave function at these distances is a linear superposition of

the incoming, �1ðR̂ÞR�2þis0 , and outgoing, �1ðR̂ÞR�2�is0 ,
Efimov radial waves. Here s0 � 1:00624. The notion
‘‘incoming’’ or ‘‘outgoing’’ is defined with respect to the
long-distance region Rm & R & jaj, so that, for example,
the incoming Efimovwave actually propagates towards larger
R whereas incoming waves in all other channels propagate

towards smaller hyperradii. The matrix sij relates the incom-

ing amplitude in the ith channel with the outgoing one in the
jth channel and describes the reflection, transmission, and
mixing of channels in the long-distance region. This matrix
is unitary and independent of the short-range physics. The
short-range effects are taken into account by fixing the relative
phase and amplitude of the incoming and outgoing Efimov
waves R2� / ðR=R0Þis0 � e2�	 ðR=R0Þ�is0 , where R0 is the
three-body parameter and the short-range inelastic processes
are parametrized by �	 > 0, which implies that the number
of triples going towards the region of R� Re is by
the factor e4�	 larger than the number of triples leaving this
region [37]. Braaten et al. [36] have shown that for a given
incoming channel i 
 2 the probability of recombination
to deeply bound states is Pi ¼ ð1� e�4�	 Þjsi1j2=j1þ
ðkR0Þ�2is0e�2�	s11j2 [38]. For a < 0, by using the fact
that s11 is unitary (

P1
i¼1 js1ij2 ¼ 1) and averaging over the

FIG. 3 (color online). (a) 7Li scattering-length dependence of
the three-body rate constant L3ðaÞ for constant T ¼ 5:9ð6Þ �K
(filled and open circles). For small positive a, L3ðaÞ for a low-
temperature condensate is also shown (green squares). The solid
blue line corresponds to our theoretical prediction Eq. (4) for
T ¼ 5:9 �K. The blue range is the same theory for 5.3 to
6:5 �K. The dashed lines show the zero-temperature prediction
for L3ðaÞ [20] fitted to the measurements in Refs. [30,39] with
the parameters �	 ¼ 0:21 and R0 ¼ 270a0. The vertical dotted
lines correspond to jaj=�th ¼ 1. The open circles in the range
1500a0 < a< 5000a0 are not corrected for residual evaporation
as our model is not applicable. (b) Logarithmic plot of the a < 0
side, displaying the two Efimov loss resonances.
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FIG. 2 (color online). Temperature dependence of the
three-body loss rate L3. Filled circles, experimental data;
green dashed line, best fit to the data L3ðTÞ ¼ �3=T

2 with �3¼
2:5ð3Þstatð6Þsyst�10�20 ð�KÞ2cm6s�1; the shaded green band

shows the 1	 quadrature sum of uncertainties. Solid line,
prediction from Eq. (5), �3 ¼ 1:52� 10�20 ð�KÞ2 cm6 s�1

with �	 ¼ 0:21 from Refs. [30,39].
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Boltzmann distribution, we then obtain the total loss rate
constant

L3 ¼ 72
ffiffiffi
3

p
�2

@ð1� e�4�	 Þ
mk6th

�
Z 1

0

ð1� js11j2Þe�k2=k2
thkdk

j1þ ðkR0Þ�2is0e�2�	s11j2
; (4)

where kth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=@.

Note that in deriving Eq. (4) we closely followed [36]
where the scattering length was assumed to be finite.
However, we easily generalize this derivation to the case
a ¼ 1, in which the channels become decoupled at dis-
tances R � 1=k and the long-distance region can now be
defined by R� 1=k. A less trivial result of our analysis is
that for any ka there exists a unitary transformation of the
matrix sij which leaves the element s11 invariant, but all

channels with i > 3 become decoupled from the Efimov
channel [34]. This transformation constructs a new large-R
channel characterized by a certain hyperangular wave

function ~�3ðR̂Þ. For negative or infinite a this is the only
channel that can ‘‘talk’’ to the lossy short-distance Efimov
channel via a unitary 2� 2 matrix. Therefore, the three-
body loss rate cannot exceed the so-called maximum value

Lmax
3 ¼ 36

ffiffiffi
3

p
�2

@
5ðkBTÞ�2=m3 reached in the case when

the outgoing flux in this newly constructed channel van-
ishes. Previous derivations of Lmax

3 [29] essentially implied

that ~�3ðR̂Þ is the lowest noninteracting hyperspherical
harmonics. This approximation can be made only for

kjaj � 1. In general, ~�3ðR̂Þ is not an eigenstate of the
angular momentum operator. In particular, at unitarity
~�3ðR̂Þ ¼ �1ðR̂Þ [34].
The function s11ðkaÞ is calculated in Ref. [34]. At unitar-

ity it equals s11ð1Þ ¼ �e��s0e2i½s0 ln2þarg�ð1þis0Þ�, and from
Eq. (4) one sees that L3T

2 should be a log-periodic function
of T. However, due to the numerically small value of js11j �
0:04, in the case of three identical bosons the oscillations are
very small and L3 is well approximated by setting s11 ¼ 0:

L3 � @
5

m3
36

ffiffiffi
3

p
�2 1� e�4�	

ðkBTÞ2
: (5)

This explains theL3 / T�2 experimental observation seen in
Fig. 2 at unitarity. Taking�	 ¼ 0:21, which is the average of
two measurements made for our 7Li Feshbach resonance in
Refs. [30,39], we get L3 ¼ �3=T

2 with �3 ¼ 1:52�
10�20 ð�KÞ2 cm6 s�1. This is 40%below the experimentally
determined value without any adjustable parameter and the
agreement between theory and experiment is 1:4	.

We should point out that Eq. (4) can be easily general-
ized to the case of other three-body systems with smaller
s0. Then, the terms neglected in Eq. (5) can become
important. They also become important in our system of
three identical bosons when departing from resonance in
the direction of a < 0. Then js11ðkaÞj monotonically
increases as a function of 1=kjaj reaching 1 in the limit

ka ! 0�, the argument of s11 also being a monotonic
function of 1=kjaj [34]. The solid dark gray (blue) line in
Fig. 3 is the result obtained from Eq. (4) using the same �	
as above and R0 ¼ 270a0 also taken from Refs. [30,39].
The shaded blue area reflects our experimental range of
temperatures. More or less visible maxima of L3 appear
when the denominator in the integrand of Eq. (4) reaches
its minimum, i.e., becomes resonant. The approximate
condition for this is args11ðkaÞ ¼ �þ 2s0 lnkR0, and the
features become increasingly more pronounced for larger
js11j and smaller �	. Note that from the viewpoint of the
visibility of the maxima, decreasing jaj is equivalent to

decreasing
ffiffiffiffi
T

p
. Figure 3(b) shows the pronounced reso-

nance at a ¼ a� � �274a0 observed in Refs. [30,39].
This resonance is associated with the passage of an
Efimov trimer through the three-atom threshold. Another

Efimov trimer, larger in size by a factor of e�=s0 ¼ 22:7,
is expected to go through the threshold at around
a � �6350a0, leading to another zero energy resonance.
As we deduce from Eq. (4) and show in Fig. 3 for 5:9 �K,
the thermally averaged remnants of this predicted reso-
nance lead to a maximum of L3 at a � �5100a0. As seen
in Fig. 3(b), the agreement between theory and experiment
is very good over the entire a < 0 range.
Because of the existence of a shallow dimer state, the case

a > 0 becomes, in general, a complicated dynamical prob-
lem which should take into account the atom-dimer and
dimer-dimer relaxation as well as various nonuniversal
factors: the finite trap depth, chemical imbalance between
trapped shallow dimers and free atoms, and deviations from
thermal equilibrium which possibly depend on the prepara-
tion sequence. These issues require an extensive discussion
beyond the scope of this Letter. The situation obviously
simplifies in the case of very small a when the system is
purely atomic and the three-body recombination to deep and
shallowmolecules leads to an immediate loss of three atoms.
Discussing the opposite limit of large a > 0, we first

note that dimers are well defined when their size �a is

smaller than n�1=3, which we assume in the following
(the limit na3 � 1 is equivalent to the case a ¼ 1). In
the regime a � �th we find using the Skorniakov-Ter-
Martirosian equation that s12 ! 0 for ka ! 1, which
implies that the atom-dimer relaxation rate vanishes;
shallow dimers then remain at chemical quasiequilibrium
with the decaying atomic ensemble, with a molecular
fraction / n�3

th � 1 (for the data of Fig. 3 with a > �th,

the molecular fraction is 0.6%) [34]. Shallow dimer for-
mation and breakup are then balanced, so that the atomic
decay is just given by Eq. (1). The expression of L3 for
a > 0 was obtained in Ref. [36] and reduces to Eq. (4) for
s12 ! 0. We conclude that the loss rate must be
continuous across the resonance, in accordance with our
experimental data. Therefore, in Fig. 3(a) the result of
Eq. (4) is simply continued to positive a for a � �th.
In summary, we have systematically studied the depen-

dence of the three-body loss rate on T and a in a Bose gas
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near unitarity. Equation (5) shows that, at unitarity, L3

never reaches Lmax
3 , and one can hope to produce quantum

degeneracy in a unitary Bose gas using atomic species with
a particularly small �	. Note that the loss mechanism in
our system drastically differs from a chemical reaction
with finite activation energy �E characterized by the
well-known Arrhenius law L3 / expð��E=kBTÞ. In our
case, instead of a potential hill there is an effective three-
body R�2 attraction leading to �ðRÞ / ð�th=RÞ2 at
distances Re & R & �th, where we normalized the three-
body wave function � to unit volume and omitted its log-
periodic R dependence. We clearly see that the probability
of finding three atoms in the recombination region is
enhanced at small temperatures and scales as j�j2 / �4

th /
1=T2. More subtle is a quantum interference effect in
Efimov three-body scattering, which leads to an enhanced
decay rate at a negative a, suggesting the possibility to
observe the signature of a second Efimov trimer of large
size. Another future direction is to explore the approach to
the quantum-degenerate regime and test whether the virial
expansion of the unitary Bose gas [40] can be measured
by using quasiequilibrium thermodynamics [9].
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