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Perturbative gluon exchange interaction between quark and antiquark, or in a 3q system, is enhanced in

a magnetic field and may cause vanishing of the total q �q or 3q mass, and even unlimited decrease of it—

recently called the magnetic collapse of QCD. The analysis of the one-loop correction below shows a

considerable softening of this phenomenon due to q �q loop contribution, similar to the Coulomb case of

QED, leading to approximately logarithmic damping of gluon exchange interaction (hVi � Oð1= lnjeBjÞ)
at large magnetic field.

DOI: 10.1103/PhysRevLett.110.162002 PACS numbers: 12.38.Aw, 13.40.Ks

Analysis of the hydrogen atom or positronium in a strong
magnetic field shows a considerable enhancement of the
Coulomb interaction, leading to the increase of binding
energy [1–4]. This fact is due to reduction of the system
size in the plane perpendicular to the direction of the
magnetic field (MF) B, making it closer to the one-
dimensional Coulomb system. As was shown in
Refs. [2,5], the binding energy in the leading order in �
grows as ln2ðB=me3Þ. It was shown later that the one-loop
corrections to the one-photon exchange seriously change
the situation: in the hydrogen atom the binding energy tends
to the finite limit [6,7], while it shows an unbounded growth
in positronium [8]. One should note that the absolute value
of binding energy in both cases is not large and the upper
limit of binding energy in hydrogen atom is 1.74 keV [7,9],
while in positronium the collapse (vanishing) of the total
mass occurs at very strong fields: Bcr � 1040 Gauss [8].

Recently the dynamics of the q �q system in a strong
magnetic field was studied in the framework of the relativ-
istic Hamiltonian, derived from the path integral for the
corresponding Green’s function [10]. The relevant tech-
nique in the case of no MF was extensively developed in
Ref. [11]. This formalism essentially exploits the back-
ground perturbation theory [12], where in our QCD case,
the role of background is played by vacuumnonperturbative
configurations ensuring confinement,while the perturbative
series better converges due to the presence of infrared (IR)
regulators and lack of IR renormalons, as compared to
standard perturbation theory. It was shown in Ref. [10]
that the one-gluon-exchange (OGE) interaction, or color
Coulomb, becomes increasingly important for large MF
when OGE is taken in the leading (no quark loop) approxi-
mation. In particular, themass of the (q �q) mesonvanishes atffiffiffiffiffiffiffiffiffiffiffi
jeqBj

q
�Oð1 GeVÞ, i.e., for B � 1019–1020 Gauss. This

fact would imply a radical reconstruction of the vacuum, a
proposal made in a different context in Refs. [13,14].

A similar situation occurs in the case of baryons in
strong MF: the baryon (e.g., the neutron) mass vanishes
at approximately the same Bcrit as for mesons [15].

It is therefore very important to check whether the quark
loop corrections may stabilize the hadron mass at high MF,
similar to the case of the hydrogen atom. As for gluon loop
corrections, ensuring asymptotic freedom (AF), they are
neutral to MF, and AF only decreases the growth of binding
energy (b.e.) [10] (b.e. grows as lnlnðeB=�Þ instead of
ln2eB in atoms) but does not prevent the collapse. But
those are fermion loop contributions which stabilized the
hydrogen atom, and below we shall study the quark-
antiquark loops in the case of the q �q mesons, taking into
account both confinement and OGE interaction.
One should stress at this point that in our problem of the

strongly squeezed q �q system, similar to the case of hydro-
gen atom, the role of the scale parameter is played byQ2 ’
eB, with �sðQ2Þ � 1 for eB � �, �2

QCD, and one can

expect a good convergence of perturbative loop correc-
tions. For the hydrogen atom this convergence was proved
in Ref. [9], and we expect the same in our case.
Using the Hamiltonian, derived in Ref. [16], we obtain

the following expression for the mass of charged meson in
magnetic field B (the lowest spin-1 state, corresponding to
�þ) in the case of zero quark masses,

MðB;!;�Þ¼ 1
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where � is the string tension and ! and � are einbein
parameters, minimizing the meson mass. The last three
terms are the Coulomb correction�MCoul as the average of
perturbative gluon exchange potential hVðQÞimes, the non-
perturbative self-energy term �MSE, and the contribution
from spin-spin interaction �MSS (see Ref. [10] for explicit
definitions). Note that without the last three corrections (1)
tends to finite limit at large MF. As we said before, at large
B the Coulomb term decreases unboundedly in the leading
approximation without quark loops. We will concentrate
now only on the Coulomb correction and see how the quark
loop contribution can change the situation.
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We start with the standard one-loop expression for the
gluon self-energy part, which contributes to the gluon
propagator as [17]

DðqÞ ¼ 4�

q2 � g2ð�2
0
Þ

16�2
~�ðqÞ

; (2)

where ~�ðqÞ contains the sum of gluon and quark loop
terms,

~�ðqÞ ¼ ~�glðqÞ � ~�q �qðqÞ: (3)

In the absence of MF and neglecting strong interaction
between gluons, one has

~�glðqÞ ¼ � 11

3
Ncq

2 ln
jq2j
�2

0

;

~�q �qðqÞ ¼ � 2

3
nfq

2 ln
jq2j
�2

0

; (4)

leading to the standard AF expression for the OGE poten-

tial (q2 ¼ �Q2 ¼ �ðq2? þ q23Þ, �ð0Þ
s ¼ ðg2ð�2

0ÞÞ=4�),

VðQÞ ¼ � 4
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s 4�

Q2ð1þ �ð0Þ
s

4� �0 ln
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�2
0

Þ
¼ � 16�
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�sðQÞ ¼ 4�

�0 ln
Q2

�2

; (5)

where �0 ¼ ð11=3ÞNc � ð2=3Þnf.
In the case of strong MF one can retain in ~�q �qðqÞ the

contribution of the lowest Landau levels, which couples
only to (q0, 0, 0, q3) polarizations, and obtain the expres-
sion, known for a long time [18] for the (eþ e�)
case, which is rewritten in our case by the replacement

�QED ! �ð0Þ
s ðnf=2Þ,

�ð0Þ
s

4�
~�q �qðqÞ ¼ ��ð0Þ

s nfjeqBj
�
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�
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2jeqBj
�
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�
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�
; (6)

where

TðzÞ ¼ � lnð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p þ ffiffiffi
z

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðzþ 1Þp þ 1 ¼

�
2
3 z; z � 1
1; z � 1

:

A convenient approximation with accuracy better than
10% is TðzÞ ¼ ð2z=ð3þ 2zÞÞ [7].
At this point one should define the mass parameter m,

which in the case of QED was (renormalized) electron
mass [6–8]. In our case the gluon and quark loop contri-
butions correspond to the graphs in Fig. 1, where we have
denoted the gluon line as a double quark line to make clear
the gauge interacting regions, and the confining regions are
cross-hatched. One can see in Fig. 1 that q and �q in the
quark loop are not interacting by simple gluon exchange
similarly to the eþ e� loop in the lowest order, but in the
q �q case only the exchange of white objects (mesons or
glueballs) can take place in higher orders.
Moreover, quarks are moving on the borders of the

confining surfaces and hence should have the typical ener-
gies of quarks at the ends of the string—they are denoted as

! ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
q þm2

q

q
i in the path-integral Hamiltonian [10,11]

and are of the order of
ffiffiffiffi
�

p
, � is string tension, and � ¼

0:18 GeV2. Thus one can replace 4m2 in (6) by 4�.
Finally, one should take into account the nonperturbative

(confining) interaction inside the gluon loops, as shown in
Fig. 1. As shown in Ref. [19] this amounts to the replace-
ment lnðQ2=�2

0Þ ! lnððQ2 þM2
BÞ=�2

0Þ, where MB �
1 GeV and is expressed solely through �. As a result one
obtains the following form of the OGE interaction, taking
into account the gluon and quark loop effects,
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where �ð0Þ
s ¼ 4�=ðð11=3ÞNc lnðð�2

0 þM2
BÞ=�2

VÞ and

Q2 ¼ q2? þ q23.
We can now estimate the average value of VðQÞ in the

meson state with the wave function, which takes into

account magnetic field and confinement, Vconf ¼ ��,
where � is the relative coordinate of two quarks. The latter
is convenient to replace by the quadratic form Vconf !
~Vconf ¼ �

2 ðð�2=�Þ þ �Þ, with � to be found from the

FIG. 1. Gluon and q �q loop insertions in the gluon exchange between quark Q and antiquark �Q in the meson (Q �Q).
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stationary point condition, @Mmes

@� j�¼�0
¼ 0. This replace-

ment has accuracy of the order of 5%, which is enough for
our purposes. Then the lowest Landau levels wave func-
tions can be easily written,

c ð�1; �3Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3=2r2?r3

q exp

�
� �2

?
2r2?

� �2
3

2r23

�
; (8)

where r? and r3 are some functions of MF (see Ref. [10]

for details), for large fields r? � ffiffiffiffiffiffiffiffiffiffiffi
2=eB

p
, r3 �

ffiffiffiffiffiffiffiffiffi
2=�

p
, and

we can compute the OGE contribution to the meson mass
hVðQÞimes,

hVðQÞimes ¼
Z

VðQÞc 2ðq?; q3Þ d
2q?dq3
ð2�Þ3 ; (9)

where c 2ðq?; q3Þ is the Fourier transform of the squared
wave function c 2ð�1; �3Þ.

The insertion of (8) and (7) in (9) yields

hVðQÞimes ¼ �C
Z e�ðq2?r2?=4Þ�ðq2

3
r2
3
=4Þd2q?dq3

Q2A1ðq2? þ q23Þ þ A2ðq2?; q23Þ
; (10)

where
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s
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s

3ð2�Þ3 : (12)

Results of calculations for hVðQÞimes as a function
of MF are shown on Fig. 2 for asymptotically large
fields. The total mass M0ðBÞ ¼ MðB;!0; �0Þ is shown
on Fig. 3 for relatively small fields. The values of parame-

ters �ð0Þ
s and �0 are connected by the relation

�ð0Þ
s ¼ ð4�=ð11=3ÞNc lnðð�2

0 þM2
BÞ=�2

VÞÞ, and we have

chosen nf ¼ 3, �0 ¼ 1:1 GeV, �V ¼ 0:385 GeV, so

�ð0Þ
s ¼ 0:42. As one can see from Fig. 2, accounting for

quark loop contributions leads to the prevention of the so-
called magnetic collapse of QCD—the resulting correction
vanishes at large MF (roughly as � 1

lnjeBj ), so the meson

mass is always finite. The profile of the meson mass
trajectory is in reasonable agreement with quenched lattice
calculations [20].
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