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We show that particle detectors, such as two-level atoms, in noninertial motion (or in gravitational

fields) could be used to build quantum gates for the processing of quantum information. Concretely, we

show that through suitably chosen noninertial trajectories of the detectors the interaction Hamiltonian’s

time dependence can be modulated to yield arbitrary rotations in the Bloch sphere due to relativistic

quantum effects.
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Introduction.—The study of the interface between gen-
eral relativity and quantum theory has long been a fruitful
area of research which, more recently, has included the
use of quantum information techniques. In this Letter, we
explore the idea that gravity or noninertial motion can be
used, in principle, to aid quantum information processing
and computing.

The concept of using noninertial motion to perform
quantum computing has been suggested by Fuentes.
Concretely, Fuentes and collaborators showed that by
accelerating optical cavities in relativistic regimes they
can perform two-mode squeezing transformations on the
field modes inside the cavity [1,2]. Our aim is different
in that we consider accelerating detectors instead of field
mode transformations; i.e., we consider, for example, the
acceleration of atoms (as an instance of detectors that
encode qubits in their internal states) instead of moving
cavities.

It is known that acceleration induces squeezing in the
field modes [3] and that this can lead to entanglement
amplification effects [4,5]. However, studies of models
of accelerated atomic detectors have always found that
acceleration (and gravity) act as a source of noise, thereby
degrading entanglement and quantum correlations [6,7].

In view of the previous literature one might therefore
expect that to accelerate detectors that carry qubits, such
as atoms, could not be beneficial for the processing of the
quantum information in those qubits. Here, we will show
that in contrast to this naive expectation, intense gravity or
the noninertial motion of accelerated atoms in a cavity
can indeed be used to build arbitrary quantum gates that
act on the internal state of the atom: we can control the
interaction as a function of time by controlling the relativ-
istic motion of the atoms and by using the associated
effects related to relativistic time dilation and length con-
traction. Thus, the key finding is that control over the
acceleration of atoms can be used to perform quantum

information tasks as a direct consequence of general rela-
tivistic quantum effects.
To this end, we will first show how acceleration can

induce controlled motion in the Bloch sphere of a qubit’s
internal state. As an illustrative example we will consider
the interaction of the atom with the vacuum state of the
field in a cavity. Then, we will show that by making atoms
accelerate while they interact with a coherent state in a
cavity, arbitrary 1-qubit quantum gates can be imple-
mented. We will show how and why similar results cannot
be obtained with inertial settings. We will finally discuss
the consequences these findings may have regarding the
detection of general relativistic quantum effects andwewill
discuss the prospects for experimental implementations.
We will see that the accelerations required are achievable
in principle with state-of-the-art particle acceleration tech-
nology. Furthermore, we will discuss that a quantum
analogue of our scenario can realistically be implemented
as a simulation in trapped ion systems or superconducting
circuit setups.
The setting.—We consider a two-level atom as our qubit.

This system will be coupled to the quantum field inside a
cavity. The interaction of an atom and the radiation inside
a cavity can be very well approximated (for atomic tran-
sitions with no exchange of angular momentum) by the
Unruh-Dewitt Hamiltonian, as shown in Ref. [8]. This
Hamiltonian models the interaction of a two-level system

with a scalar field [9]. The Hamiltonian is H ¼ HðdÞ
0 þ

HðfÞ
0 þHI, being HðdÞ

0 and HðfÞ
0 , respectively, the free

Hamiltonian of the two-level system and the field and HI

the interaction Hamiltonian HI ¼ ��ð�Þ�ð�Þ�½xð�Þ�,
where � is the coupling strength, �ð�Þ is a switching
function controlling the interaction time, �ð�Þ the mono-
pole moment operator and xð�Þ the worldline of the atom.
� will be the energy difference between the ground and
excited state of the two-level system (we will refer to it as
the ‘‘detector,’’ the ‘‘atom’’ or the ‘‘qubit’’). The detector is
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coupled through its monopole moment to the massless
scalar field �ðxÞ along its worldline. In the interaction
picture HI takes the form

HI ¼ ��ð�ÞX
1

j¼1

ðayj ei!jtð�Þ þ aje
�i!jtð�ÞÞ sinkjxð�Þ; (1)

where the monopole moment of the qubit takes the usual
form �ð�Þ ¼ �þei�� þ ��e�i��. This Hamiltonian is
essentially equivalent to the infinitely multimode Jaynes-
Cummings model.

Notice that we have chosen to expand the field in terms
of the standard basis of Minkowskian stationery waves.
Depending on the detector’s trajectory, the relationship
between the Minkowskian time and position (t, x) and
the proper time of the detector � will vary. In the simplest
scenario of a stationary inertial atom the worldline of the
detector is given by x ¼ x0 and t ¼ �. In the still relatively
simple case of a uniformly accelerated detector of fixed
acceleration a, t, and x are parametrized in terms of the
proper time of the detector � as

xð�Þ ¼ a�1ðcosha�� 1Þ; tð�Þ ¼ a�1 sinha�; (2)

where we have assumed for simplicity c ¼ 1 and that at
� ¼ t ¼ 0 the detector is in the x ¼ 0 position of the
cavity. Hence, this leaves us with a time-dependent
Hamiltonian Hð�Þ.

The time evolution under this Hamiltonian from a time
� ¼ 0 to a time � ¼ T is given by the following expansion

UðT; 0Þ ¼ 1� i
Z T

0
d�HIð�Þ

�
Z T

0
d�

Z �

0
d�1HIð�ÞHIð�1Þ þ � � � (3)

Under the realistic assumption that the coupling strength
is small enough, we can neglect higher orders in Eq. (3).
If we denote by �0 the initial density matrix of the field-

detector system we get that after a time T, �T ¼ �0 þ
�ð1Þ
T þ �ð2Þ

T þOð�3Þ, where
�ð1Þ
T ¼ Uð1Þ�0 þ �0U

ð1Þy; (4)

�ð2Þ
T ¼ Uð1Þ�0U

ð1Þy þUð2Þ�0 þ �0U
ð2Þy: (5)

Accelerated detector in vacuum.—Prior to showing how
to implement arbitrary Bloch sphere rotations based on
relativistic motion we will first analyze one of the advan-
tages of controlling the interaction: It is well known that,
if we prepare the vacuum state in a cavity, an inertially
moving atom will not be able to reach every point of the
Bloch sphere no matter how much time of evolution we
allow. As an example of this, an atom in the ground statewill
never evolve into the excited state if there are no photons to
absorb. More specifically, the reason is that the terms in the
Hamiltonian (1) that would allow such transitions (the

counterrotating terms whose nature we will review below)
are suppressed for non-negligible times due to their highly
oscillatory nature (See, for instance, Ref. [10]).
However, we will discuss below that this is not the case

for an accelerated detector. Because of relativistic effects
the rotating and counterrotating terms both become equally
important for the relevant time scales.
For instance, an accelerated Unruh-DeWitt detector

probing the vacuum state of the field would detect instead
a distribution of field quanta [11] due to the contribution
of the counterrotating terms (the celebrated Unruh effect).
It is therefore not surprising that, even in the vacuum, an
atom can nontrivially move around the Bloch sphere by
controlling its acceleration. Although using the vacuum
state is not optimal to show that arbitrary 1-qubit gates
can be implemented, it constitutes a first example to illus-
trate the differences between the inertial and the acceler-
ated case, and we will briefly analyze it prior to showing
how to perform arbitrary rotations in the Bloch sphere:
Directly from (3), the first order contribution to the evolu-
tion operator is given by

Uð1Þ ¼�

i

X
j

ð�þayj Iþ;jþ��ajI�þ;jþ��ayj I�;jþ�þajI��;jÞ;

I�;j�I�;jðTÞ¼
Z T

0
d�ei½���þ!jtð�Þ�sin½kjxð�Þ�: (6)

For an inertial detector this is the well-known integration of
the rotating and counterrotating terms with the typical
resonance condition !j ¼ �. However, in the accelerated

case, after substituting xð�Þ and tð�Þ with the parametriza-
tion (2) we observe that the phases depend very nontri-
vially on time, so that (i) the resonance condition is time
dependent, and (ii) the counterrotating terms become
comparable to the rotating ones very quickly.
Let us now begin with an arbitrary state for the qubit

and the vacuum in all the modes of the cavity, namely,

�0 ¼ �0;ðdÞ �j j0jih0jj. By simple inspection of Uð1Þ one
can readily check that �ð1Þ

T;ðdÞ ¼ TrðfÞ�
ð1Þ
T ¼ 0. Therefore,

the leading contribution to the qubit evolution comes
from the second order (in �) density matrix perturbation.
Since the field is originally in the vacuum state, after some
lengthy computations one finds that

TrðfÞ½Uð1Þ�0U
ð1Þy�¼�2

X1
j¼1

ðAx
j�x�0;ðdÞ�xþAy

j�y�0;ðdÞ�y

þAxy
j �x�0;ðdÞ�yþAyx

j �y�0;ðdÞ�xÞ;
Ax=y
j ¼jIþ;jj2þjI�;jj2�I�þ;jI�;j�Iþ;jI

��;j;

Axy
j ¼i½ðIþ;jI

��;j�I�þ;jI�;jÞ�jIþ;jj2þjI�;jj2�;
and Ayx

j ¼ ðAxy
j Þ�. The derivation of the contribution com-

ing from the second term in Eq. (5) is more involved but
can be simplified given that we are interested only in

TrFðUð2Þ�0Þ with the field initially in the vacuum state:
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TrFðUð2Þ�0Þ ¼ �2
X1
j¼1

ðC1;j�D0 þ Cz;j�z�D0Þ;

C1;j ¼ 2ðMj;�;þ þMj;þ;�Þ;
Cz;j ¼ 2ðMj;�;þ �Mj;þ;�Þ;

Mj;�;�0 ¼
Z T

0
d�I�0;jð�Þ d

d�
I�;jð�Þ�:

(7)

We can now compute the change of the Bloch vector
b ¼ ðbx; by; bzÞ after time evolution. If we define B�;j ¼
Iþ;jI

��;j � I�þ;jI�;j, D�;j ¼ jIþjj2 � jI�jj2, then

�bx ¼ 2�2
X
j

��
Bþ;j

4
þReC1;j

�
bxþ

�
iB�;j

4
þ ImCz;j

�
by

�
;

�by ¼ 2�2
X
j

��
ReC1;j�

Bþ;j

4

�
byþ

�
iB�;j

4
� ImCz;j

�
bx

�
;

�bz ¼ 2�2
X
j

��
ReC1;j�

Dþ;j

4

�
bzþ

D�;j

4
þReCz;j

�
:

One can check that the internal state of an inertial detector
cannot be moved towards the north pole of the Bloch
sphere when it is in the northern hemisphere. However in
the accelerated case it is possible to move in any direction
of the Bloch sphere by just increasing the acceleration,
which makes the rotating and counterrotating terms com-
parable. Also, the acceleration introduces a dynamical
Doppler effect that gets the atom in resonance with several
modes during its time inside the cavity, making the atom
resonate successively to several different modes of the field
(multiple level crossing [12]).

This setting is, however, not very useful to achieve
universal 1-qubit gates since the state of the atom gets
mixed at the same order of perturbation theory as the
rotation effects appear. We will now discuss how to per-
form arbitrary 1-qubit quantum operations on the internal
state of the atom by preparing a coherent state in the cavity,
which is also simpler to prepare than the vacuum.

Universal 1-qubit gates with coherent states.—In this
section, we show the main claim of the Letter: that one
can achieve arbitrary rotations by preparing coherent
states in one of the modes of the cavity. Let us consider
that now the initial state of the system is �0 ¼
�0;ðdÞ � j�!i

ih�!i
jNj�ij0!j

ih0!j
j.

In this case the leading order is given by Eq. (4). In fact,
if the rest of the modes are not populated, their contribu-
tions will be of second order in �. To compute the leading

order time evolution we need to calculate TrfðUð1Þ�0Þ. This
is particularly simple given that Trfða�0Þ ¼ ��0;ðdÞ and
Trfðay�0Þ ¼ ���0;ðdÞ. Hence, we have

TrfðUð1Þ�0Þ ¼ �

i
½�ð�þI�� þ ��I�þÞ

þ ��ð�þIþ þ ��I�Þ��0;ðdÞ;

where I� is the integral (6) for the mode i where the
coherent state is prepared. Defining A ¼ ��Iþ þ �I��,

�T;ðdÞ ¼ �0;ðdÞ þ �

i
½ðAþ A�Þ�x�0;ðdÞ

þ iðA� A�Þ�y�0;ðdÞ � H:c:�: (8)

An infinitesimal rotation on the Bloch sphere of
angle 	 around the axis defined by n is Rnð	Þ � 1� i 	2 	
ðn � �Þ. Its action on a density matrix �0;ðdÞ would be

Rnð	Þ�0;ðdÞRnð	Þy � �0;ðdÞ � i 	2 ðn � ��0;ðdÞ � H:c:Þ.
By inspection we see that Eq. (8) has the form of an

infinitesimal rotation around the axis defined by the direc-
tion of the (unnormalized) vector

n ¼ ðAþ A�; iðA� A�Þ; 0Þ; (9)

and the magnitude of the rotation is

	 ¼ 2�jnj ¼ 4�j�jje�iArg�Iþ þ eIArg�I��j: (10)

Therefore, we can perform unitary rotations thus intro-
ducing no mixedness at leading order in the coupling
strength. For the perturbative calculation to be valid, we
require that �j�j 
 1 (See Ref. [13]). If this is fulfilled any
nonunitarity of the transformation coming from truncating
the perturbative series (and therefore the introduced mix-
edness) would be negligible. Note that the rotation axis is
independent of � and therefore we would be able to vary
it regardless of how small the coupling strength.
For an accelerated atom, A ¼ Aða; TÞ and n ¼ nða; TÞ

are functions of acceleration and interaction time.
Controlling the atom’s acceleration and the interaction
time we can control both the axis with respect the rotation
is performed and the magnitude of the rotation.
To be able to freely move in the Bloch sphere by means

of several of these small rotations we need to prove that one
can perform at least two independent rotations at every
single point in the Bloch sphere. We see in Fig. 1(a) the
azimuthal angle of the rotation axis �TðaÞ as a function
of acceleration for a fixed interaction time, showing that
independent rotations can be achieved by varying accel-
eration. Figure 1(b) shows the magnitude of the rotation.
In a similar fashion we can compute �aðTÞ to evaluate the
variation in the rotation axis as a function of T for a fixed
acceleration. As portrayed in Fig. 2, the rotation axes can
be controlled to be even more than a hundred degrees apart
controlling the interaction time T.
We see that given the rotation axis dependence on a we

can make completely independent rotations in the Bloch
sphere by controlling the atom’s acceleration. Out of the
composition of such rotations, an arbitrary trajectory in the
Bloch sphere can be tailored by letting the atom describe
accelerated trajectories through an array of several cavities
as shown in Fig. 1(c).
Comparison with the inertial case.—Let us compare the

results above with an equivalent setting in which we have

PRL 110, 160501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

19 APRIL 2013

160501-3



an inertial atom and assume that we have control over the
total interaction time. Although there is indeed some varia-
tion of the rotation axis when we increase T, we can show
that such variation is always much smaller than what we
would obtain for an equivalent setting but with a fixed
acceleration. More importantly, in the inertial case as
time increases, the rotation axis starts a damped precession
around a fixed vector in the Bloch sphere, rendering the
time controlling technique useless in order to perform
rotations around different axes if the atom is not acceler-
ated. This can be seen in Fig. 2.

Experimental feasibility and two qubit gates.—Let us
consider the magnitudes involved in a possible experimen-
tal implementation. The natural scale of units is fixed by
fixing units for�, namely ~a ¼ að�c=
Þ. For atomic gaps
of GHz, one natural unit of acceleration is equivalent to
1016g (g is the Earth surface gravity) so to have nontrivial
rotations we would need accelerations of �1015g. This
acceleration is one order of magnitude better than the
best previous proposal for detection of the Unruh effect
with the same atomic gap [14] and plausible in theory [15].
In fact, the acceleration required can be further reduced
using a detector with a smaller gap. For example, the use
of hyperfine transitions or nuclear spin as our qubit will

reduce the energy gap to order of MHz [16] thereby
reducing the required accelerations to �1012g. This is
also the scale of accelerations that can be reached at the
LHC [17]. Additionally, one can think of Stark shifted
atomic levels or Zenner-induced transitions as qubits to
achieve regimes of Hz hence reducing the accelerations to
�106g. Those accelerations are indeed experimentally
achievable for the short times required.
Although theoretically within reach of current technol-

ogy, an experimental realization would be much easier to
achieve in analogue systems. Current technology of ion
trapping and superconducting circuits already allows for
experiments where relativistic effects can be observed
[18–20]. In particular, the simulation of relativistically
accelerating atoms in trapped ion systems and supercon-
ducting circuits was formerly studied in Ref. [12]. The
simulations proposed in Ref. [12] are precise analogues
of the physical setting required here.
Specifically, for the simulation in trapped ions, an analy-

sis of orders of magnitude is also provided in Ref. [12].
A conservative estimation of the accelerations that could
be reached in these simulations is a=c � ð10�3–10�1Þ �,
which already allows for the observation of all the effects
studied here. As discussed in Ref. [12], current technology
in acusto-optical resonators can produce variations of the
optical phase in a rate much beyond the required scales to
build an experimental realization of what is proposed in
this letter. This would be achieved by means of standard
experimental techniques from trapped ion quantum
computation [21].
Additionally, and as also discussed in Ref. [12], super-

conducting qubits ultrastrongly coupled to a microwave
cavity [22] provide a natural setup of an analogue setting
where this experiment can be realized. In this case, the
relativistic atom Hamiltonian is simulated by means of
the driving of the qubit frequency using the techniques
published in Ref. [23].
Regarding two-qubit operations, there is always the

possibility of performing only the single qubit operations
through relativistic motion while performing the two-qubit
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FIG. 2 (color online). For �j�j ¼ 0:01, variation in the rota-
tion axis as a function of time for an atom at rest centred in the
cavity (blue solid line) and and an accelerated atom with fixed
acceleration a ¼ 1 (red dashed line). For the inertial case the
rotation axis quickly stagnates, whereas in the accelerated case
we observe a much greater variation that does not get damped
with time.
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operations through more traditional methods, such as, for
instance, by trapping the previously accelerated ions and
then applying conventional trapped ions techniques for
implementing two-qubit gates. This is possible because
arbitrary one qubit operations can be performed also under
the constraint of the trajectory ending at rest.

On the other hand, there is the exciting possibility that
two-qubit gates could also be driven throughmotion. Indeed,
as soon as there is an interaction between the two systems
via the field, one generically obtains an entangling two-qubit
unitary, as one can readily check [20,24,25]. We can there-
fore use the fact [26] that any entangling unitary combined
with all 1-qubit gates yields all unitaries to conclude that we
here obtain a universal set of gates through motion.

Conclusions and outlook.—We have shown the funda-
mental result that through the controlled acceleration of
qubits, such as an atom, universal 1-qubit operations (i.e.,
arbitrary rotations in the Bloch sphere) can be performed.
Controlled interactions of two suitably accelerated qubits,
in principle, could yield all two-qubit gates and therefore
universal quantum computing. Although the high acceler-
ations required are experimentally attainable in principle
(see Refs. [14,15]), we discussed that an experiment is
already within reach of quantum simulators in analogue
systems. It should be very interesting to determine optimal
acceleration protocols, which may, e.g., involve oscillatory
paths that employ resonance phenomena.

In addition, our finding here, namely, that accelerations
can induce arbitrary rotations in the Bloch sphere of an
atomic qubit, could also be useful in the reverse direction:
by experimentally checking for subtle rotations in the
Bloch sphere of a detector in a suitable background one
may be able to better detect quantum effects that are due
to the detector’s acceleration, such as the Unruh effect, or
even quantum effects that are due to curvature, because of
the equivalence principle (see also Refs. [27,28]).
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