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We propose a definition of nonclassicality for a single-mode quantum-optical process based on its

action on coherent states. If a quantum process transforms a coherent state to a nonclassical state, it is

verified to be nonclassical. To identify nonclassical processes, we introduce a representation for quantum

processes, called the process-nonclassicality quasiprobability distribution, whose negativities indicate

nonclassicality of the process. Using this distribution, we derive a relation for predicting nonclassicality of

the output states for a given input state. We experimentally demonstrate our method by considering

the single-photon addition as a nonclassical process and predicting nonclassicality of the output state

for an input thermal state.
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Introduction.—The ability of detecting any nonclassi-
cality generated by any quantum device enables us to
manipulate and control the evolution of a quantum state.
In particular, this plays a central role in implementation of
quantum information processing and communication [1].

In general, the problem of the characterization of an
unknown quantum device is addressed by means of quan-
tum process tomography [2–4]. A general method for
quantum process tomography was recently proposed that
is based on probing a quantum process (described by a
completely positive and linear map E) using coherent states
to characterize the process tensor in the Fock basis, with a
fixed maximum number of photons [5–8]. However, any
photon-number cutoff will transform a classical state into a
nonclassical one, as a finite sum of nonclassical states is
always nonclassical. Therefore, the previously known
methods are not able to distinguish quantum processes
whose outputs are classical for any classical input state
from those that may convert classical input states into
nonclassical output states.

For this purpose a universal nonclassicality test of the
output states is indispensable. Nonclassicality of quantum
states is characterized by the Glauber-Sudarshan represen-
tation [9,10] of the density operator �̂,

�̂ ¼
Z

d2�Pð�Þj�ih�j: (1)

If the P function has the form of a classical probability
density, the corresponding quantum state is said to have
classical analogue [11], otherwise the state is referred to as
nonclassical [12]. However, in practice the P function is
highly singular for many quantum states, so that it cannot
be used to experimentally check the nonclassicality in
general.
A recently proposed method for verifying nonclassical-

ity of quantum states is to use a regularized version of the P
function, referred to as the nonclassicality quasiprobability
distribution (NQD), P�ð�Þ. Its negativities indicate the
nonclassicality of any quantum state [13], and it can be
directly sampled by homodyne detection [14,15]. The
relation between the NQD and the P function is easily
formulated by their Fourier transforms, i.e., the character-
istic functions��ð�Þ and�ð�Þ, respectively. The function
�� is obtained by multiplying � with a proper filter
function (for a detailed discussion of the requirements we
refer to Ref. [13]). An example of such a filter function is

�wð�Þ ¼ 1

N

Z
d2�e�j�j4e�j�=wþ�j4 ; (2)

where N ensures the normalization �wð0Þ ¼ 1.
In this Letter, we propose a definition of nonclassicality

for single-mode quantum-optical processes. We introduce
a method for detecting nonclassical processes by testing
the nonclassicality of the output states for coherent states at
the input. If there exists an input coherent state leading to a
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nonclassical output state, the quantum process is nonclass-
ical. This method enables us to identify nonclassical quan-
tum processes that may transfer classical input states into
nonclassical output states. We derive a relation for predict-
ing the NQD of the output state for given input states.
Moreover, we experimentally demonstrate our method by
verifying the single-photon addition to be a nonclassical
process and predicting nonclassicality of the output state
for an input thermal state.

Nonclassical processes.—For a general input quantum
state �̂, the output of a quantum process described by the
map Eð�̂Þ is obtained by using Eq. (1) and the linearity of
the map,

Eð�̂Þ ¼
Z

d2�Pinð�ÞEðj�ih�jÞ; (3)

where Pinð�Þ is the P function of the input state. As the
map may not be trace-preserving in general, the output
state, �̂E / Eð�̂Þ, is obtained from this expression simply
by normalization. The P function of the output state is
given by

Poutð�Þ ¼
Z

d2�Pinð�ÞPEð�j�Þ; (4)

where PEð�j�Þ is the P function of the output state of the
process conditioned on the input state being the coherent
state j�i.

From (4) it follows that if the output states of a quantum
process for input coherent states are classical states, i.e.,
having P functions that are positive semidefinite, then
the output of the process for any classical input quantum
states will always be a classical state. This motivates
us to define nonclassicality of quantum processes as
follows.

Definition: A quantum process is nonclassical if it trans-
forms an input coherent state to a nonclassical state.

Therefore, based on this definition, a classical process
transforms all coherent states to classical states, and the
output state is classical for any classical input state. Also,
nonclassicality of the output state for only one coherent
state is sufficient evidence that the process is nonclassical.

As the regularized version of the P function P�ð�Þ is an
appropriate representation of quantum states for experi-
mentally verifying nonclassicality, we introduce a related
characterization of quantum processes. The regularized
version of PEð�j�Þ, denoted as P�;Eð�j�Þ, a regular

function of two complex variables, is a representation
of the process that we use to verify its nonclassicality.
This conditioned quasiprobability distribution is denoted
as the process-nonclassicality quasiprobability distribution
(PNQD), which unambiguously identifies the nonclassical-
ity of a given quantum process. For a nonclassical process
there exists an input coherent state j�0i and �0 such that
P�;Eð�0j�0Þ< 0.

We note that the nonclassicality of a quantum process
does not imply that the output state is nonclassical for any
classical input states, as we shall see in the following
example of the cat-generation process. Having knowledge
of the PNQD, P�;Eð�j�Þ, and using (4), one can find the

NQD of the output state for an input state described by
Pinð�Þ via

P�ð�Þ ¼
Z

d2�Pinð�ÞP�;Eð�j�Þ: (5)

In case the P function of the input state is highly singular,
by using the Parseval identity the NQD of the output state
can be obtained as

P�ð�Þ ¼
Z

d2��inð�Þ ~P�;Eð�j�Þ; (6)

where �inð�Þ is the characteristic function of the P func-
tion and ~P�;Eð�j�Þ is the Fourier transform of P�;Eð�j�Þ.
For unknown quantum processes the PNQD can be

estimated by sampling the NQD of the output states
[14,15] for a sufficiently large number of input coherent
states. In principle, for any unknown quantum process,
P�;Eð�j�Þ can even be uniquely determined by knowing

the action of the process on only an arbitrary small com-
pact set of input coherent states j�i [16].
Examples of classical and nonclassical processes.—

Examples of classical processes include the photon sub-
traction and the interaction of a state with a thermal bath;
for further details on classical maps, cf. Ref. [17]. For the
photon-subtraction process, the map

Eðj�ih�jÞ ¼ âj�ih�jây ¼ j�j2j�ih�j (7)

yields a classical state. Consequently, the output will be
classical for any classical input state [18]. However, a
nonclassical input state may be transformed to an output
state with modified nonclassical properties [19]; see Fig. 1.

FIG. 1 (color online). The NQD for the output of the single-
photon subtraction process, acting on a squeezed vacuum state
with variances Vx ¼ 0:5 and Vp ¼ 3:0. We used the filter func-

tion (2) with the filter width w ¼ 1:5. The negativities indicate
the nonclassicality of the state.
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Hence, the output state of a classical process for a non-
classical input state may not be classical.

Let us consider a model for the process of decoherence
caused by a thermal bath of mean occupation number �n
[20], the characteristic function of the P function of the
state at time t is given by [21]

�ð�;tÞ¼ exp½�j�j2ð �n�ð �nþ1Þe�2�tÞ��Qð�e��t;0Þ; (8)

where �Qð�; 0Þ [�Qð�; 0Þ ¼ exp½�j�j2��ð�; 0Þ] is the

characteristic function of the Q function of the state at
time t ¼ 0, t is the interaction time, and � is the damping
rate. The Q function of any quantum state is a positive
semidefinite function [22]. Hence, for �n

�nþ1 > e�2�t the P

function is positive semidefinite, as it is given by the
convolution of two positive semidefinite functions, and
the output state for any initial nonclassical state is always
classical. In this case, this process is classical.

An example of a nonclassical process is the cat-generation
process. The unitary evolution associated with the

Hamiltonian ĤKerr ¼ �ðâyâÞ2 generates the Schrödinger
cat state at time t ¼ 	

2� (@ ¼ 1) [23,24]:

Eðj�ih�jÞ ¼ e�ið	=2ÞðâyâÞ2 j�ih�jeið	=2ÞðâyâÞ2

¼ 1

2
ðj�i þ ij � �iÞðh�j � ih��jÞ: (9)

This is a nonclassical process, as the PNQD takes on negative
values; see Fig. 2. As would be expected, this nonclassical
process converts a classical state to a nonclassical one.
However, for certain classical input states the output state
can be classical. As the corresponding unitary operator is a
function of the photon number operator n̂ ¼ âyâ, it leaves
the photon number states jnihnj unchanged. As a conse-
quence, any statistical mixture of photon number states
remains unchanged. Therefore, the output state of this pro-
cess for an input thermal state is the same thermal state,
which yields a classical output from a nonclassical process
with classical input.

Last but not least, even a nonclassical process with
nonclassical input can have a classical output state. A
simple example is the application of the squeezing opera-
tion on a squeezed input state. For example, when a
squeezed vacuum input state is squeezed again with the
same amount of squeezing but in the quadrature orthogonal
to the original squeezing, the squeezed state transforms
into the vacuum state.
Experimental demonstration of a nonclassical pro-

cess.—Based on our definition, the single-photon addition
process is a nonclassical process, as it transforms the
vacuum state to the single-photon state, i.e., a coherent
state with zero amplitude to a nonclassical state. In the
following, we experimentally demonstrate our method by
applying it to the single-photon addition process.
Stimulated parametric down-conversion is used to gen-

erate the single-photon-added coherent states [25,26]. The

core of the experimental setup is a �ð2Þ-nonlinear crystal
[�-barium borate (BBO), type I] pumped by a 90-mW UV
beam obtained by frequency doubling 1.5 ps pulses at
785 nm from a mode-locked Ti:sapphire laser. The sponta-
neous parametric down-conversion from the crystal con-
sists in pairs of entangled photons emitted in two
well-defined directions called signal and idler. When a
seed coherent state is injected in the crystal along the signal
direction, stimulated emission also takes place. A single-
photon avalanche silicon detector is placed along the idler
beam after spatial and spectral filtering. A click from this
detector heralds the generation of a single-photon-added
coherent state in a well-defined spatiotemporal signal
mode, which is then characterized by time-domain homo-
dyne detection [27]. In the experiment, we analyzed the
photon-added states with 13 different input coherent-state
amplitudes. For each acquisition the homodyne phase was
varied between zero and 	 and actively locked to 10
different values by monitoring the dc level from the ho-
modyne receiver.
Now we prove experimentally that this process is a

nonclassical one. To estimate the PNQD of this process
from experimentally recorded quadrature distributions, we
use the sampling approach which has already been applied
to determine the NQD in Ref. [15]. The PNQD is recon-
structed by using the filter function (2) with the filter width
w ¼ 1:2. The effect of the quantum efficiency is removed
as described in Ref. [16]. The obtained results are shown
for three different input coherent states in Fig. 3. We
observe negativities for different amplitudes of the coher-
ent input state j�i, with decreasing negativity for increas-
ing �. Obviously, the negativity appears close to the origin
of phase space, i.e., at � ¼ 0. Therefore, we examine the
dependence of the PNQD on the input amplitude � at
� ¼ 0 more closely; see Fig. 4. It is clearly seen that the
negativity is statistically significant for low input ampli-
tudes �, which eventually yields the sought experimental
proof of the nonclassicality of the process. For larger

FIG. 2 (color online). The PNQD of the cat-generation pro-
cess, for an input coherent state with � ¼ 2:0. The filter function
is the same as in Fig. 1.
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amplitudes, the negativity vanishes at � ¼ 0. However,
this does not mean that the output state for an input
coherent state with large amplitude is classical. As the
single-photon-added coherent states are nonclassical for
any input amplitude [26], one will find negativities of the
PNQD at values of � different from zero.

By using the experimentally estimated PNQD for the
single-photon-addition process, we are able to estimate the
NQD of the output state via Eq. (5) for a thermal input
state with low mean photon number. The fact that photon
addition is probabilistic is properly taken into account; for
details, see Ref. [16]. In Fig. 5 we show the predicted NQD
of the output state for a thermal input state, displaying
strongly significant negativities, which prove nonclassical-
ity of the output. This estimate of the NQD of the output
state is in good agreement with the directly measured NQD
of single-photon-added thermal states [14].

Conclusions.—We have proposed a definition of non-
classicality of a quantum process through its action on
coherent states. Based on this definition, any quantum pro-
cess that transforms a coherent state to a nonclassical one

is identified as a nonclassical process, which may transfer a
classical state to a nonclassical one. For classical processes
the output state is guaranteed to be classical for any input
classical states. A classical process can also be useful to
transform the nonclassical properties of the input state into
another form, which is desired for some applications.
Nonclassical processes are necessary for the generation

of nonclassical states, and subsequently they can be used to
create entanglement by overlapping them on a beam split-
ter [28,29]. Conversely, interference of classical states will
not generate entanglement. The presented method enables
us to check whether an unknown quantum device can
generate nonclassical states and to predict nonclassicality
of the output state. One useful application for the method is
to verify nonclassicality (classicality) in multimode quan-
tum devices and channels, by considering each input to
output connection as a single-mode process, when output
states are required to be entangled (unentangled) states.

FIG. 4 (color online). PNQD with w ¼ 1:2 for different input
amplitudes � for the single-photon-addition process, evaluated
at � ¼ 0. The error bars correspond to one standard deviation.
The green solid line represents the theoretical expectation.

FIG. 5 (color online). Estimated NQD of the output state of the
single-photon-addition process for a thermal input state with
mean thermal photon number �n ¼ 0:5. The standard deviation,
shown by the blue (dark) shaded area, is mostly hidden by the
linewidth, the systematic error is displayed by the red (gray)
shaded area; see Ref. [16].

FIG. 3 (color online). PNQD of the single-photon-addition process with w ¼ 1:2 at different amplitudes � ¼ 0:00, � ¼ 0:46, and
� ¼ 1:12 of input coherent state (from left to right).
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