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1Centre de Physique Théorique, Aix-Marseille Université, CNRS UMR 7332, Université de Toulon, 13288 Marseille cedex 9, France
2Data Science Lab, Institute for Scientific Interchange (ISI) Foundation, Torino 10126, Italy

3Department of Mathematics and Program in Applied Mathematics, the University of Arizona, Tucson, Arizona 85721, USA
4Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

(Received 28 January 2013; published 8 April 2013)

We propose a procedure to generate dynamical networks with bursty, possibly repetitive and correlated

temporal behaviors. Regarding any weighted directed graph as being composed of the accumulation of

paths between its nodes, our construction uses random walks of variable length to produce time-extended

structures with adjustable features. The procedure is first described in a general framework. It is then

illustrated in a case study inspired by a transportation system for which the resulting synthetic network is

shown to accurately mimic the empirical phenomenology.

DOI: 10.1103/PhysRevLett.110.158702 PACS numbers: 89.75.Hc, 02.50.Ey, 05.40.Fb

Many systems in nature or related to human activities
are conveniently represented as networks of interacting
units that can exchange material or information. This
approach, combined with techniques from graph theory,
statistical physics and data analysis, has led to countless
interesting studies and insights in numerous fields [1–6].

Until recently, network structures were often regarded as
being stationary, both for simplicity and because of scarce-
ness of data sets on the time variability of connectivity
patterns. Thanks to advanced acquisition technologies and
large scale production of time-resolved data, temporal
information has become more accessible in numerous con-
texts, from communication networks [7–11] to proximity
patterns [12,13] and infrastructure networks [14,15]. This
has led to the recent surge of activity in the field of ‘‘temp-
oral networks’’ [16]. Data analysis revealed the coexistence
of statistically stationary properties and local variations,
interaction burstiness [7–20] and the occurrence of nonlocal
repetitive patterns [15,21]. These structural properties affect
the dynamical processes taking place on networks [22–31].
Therefore, they have to be accounted for in modeling
approaches.

Despite the proliferation of temporally resolved data sets,
strong limitations perdure. Indeed, data are often only acc-
essible in restricted forms, such as single samples of limited
sizes and statistical relevance. Comparison of connection
patterns at different times is not always possible. Some data
sets consist only of aggregated information and do not
provide access to the temporal course of events. In such
circumstances, it is necessary to be able to generate syn-
thetic time-extended structures whose aggregation would
reproduce the data at hand. This would enable one to go
beyond the approximation of static networks and to incor-
porate dynamical components in network structures.

Several models of temporal networks have been pro-
posed in the literature [14,32–36]. Their dynamics mostly
consist of link updates and show that a global complex

space-time organization can emerge as the result of simple
pairwise cooperation or competition rules between indiv-
idual units. Data set randomization is also employed to
create null models against which the temporal pattern
complexity of empirical data can be evaluated [16,22].
The modeling approach developed in this Letter is to

some extent more direct and pragmatic. It is intended to
provide a versatile procedure for the construction of time-
dependent networks with adjustable characteristics that
mimic bursty and possibly repetitive behaviors, as well
as extended temporal correlations, as they are observed
in real world systems. The goal is to obtain realistic tem-
poral structures independently of any access to data sets or
assumptions about basic interaction mechanisms.
The proposed procedure originates from the observation

that in many graphs representing systems such as transpor-
tation, trade, or communication networks, connection
patterns are the result of activity spreading along noisy
itineraries within a complex structure. The weighted
directed graph used to represent this activity is then given
by the accumulation of such itinerary traces. Our construc-
tion proceeds in the opposite manner. Starting from a given
weighted directed graphG, it assumes that this graph is the
superposition of randomwalks in a given timewindowW ,
and seeks to ‘‘unfold’’ these walks, as schematically illus-
trated in Fig. 1.
Below, we first describe the construction in a general

setting. We then apply it to a case study inspired by a
transportation system, and use this real-world system to
benchmark the synthetic network. Finally, we put forward
a characterization of the topological and temporal correla-
tions that takes into account the heterogeneity of the activity
in the network.
Temporal network construction.—The construction

takes as input a graphG ¼ ðS; EÞ and a timewindowW ¼
f0; 1; � � � ; T � 1g. Here, S is a set of nodes and E is a set of
weighted directed edges, either obtained from data or built
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with prescribed properties such as in and out degree dis-
tributions and/or distributions of link weights (for defini-
tions of degree, weight, and strength, see, e.g., Ref. [6]).
The temporal network is built as follows. (i) First, the
following random walk characteristics are chosen: distri-
butions of starting times in W , of starting locations in S,
of walk lengths, and of residence times at each node.
(ii) Then, the random walks are generated independently,
one after another, using the characteristics specified above.
Each walk defines an itinerary that consists of a list of
events fði0;i1;t1Þ;ði1;i2;t2Þ;���;ði‘�1;i‘;t‘Þg with t1<���<t‘
(Fig. 1). At each step, the node ip is uniformly chosen

among the out neighbors of ip�1, and the residence time

tpþ1 � tp is drawn from the residence time distribution

associated with ip. Any walk reaching a node with no out

link terminates there, even if it has not yet reached its
prescribed length. (iii) As the construction proceeds, the
graphG is continuously altered as follows: if a walk passes
through the link i ! j, the weight wij is decreased by 1;

whenever wij reaches 0, the edge i ! j is discarded from

the graph and cannot be used anymore. (iv) Walks are
generated until all edges have been discarded from G.
Then, the process terminates.

The temporal network N is defined as the union of all
the constructed itineraries. By construction, the set of
weighted directed edges resulting from the collection of
all events in N coincides with the original set E.
Itineraries are interpreted differently depending upon
context. For instance, in transportation systems, the event
(i, j, t) is regarded as a material displacement from i to j at
time t. In communication networks, events correspond to
transmission of information.

Note also that the construction can be used to model
routine or seasonal processes occurring in consecutive time
windows, using a ‘‘noisy deterministic’’ rule: for each n, a
tunable fraction of walks is redrawn in W n ¼ fnT; nT þ
1; . . . ; ðnþ 1ÞT � 1g, while the remaining itineraries are
repeated identically from W n�1 to W n.

We claim that, under suitable choices of input parame-
ters, the network N can mimic real-world features, in
particular bursty temporal patterns and extended correla-
tions. To support these assertions, we benchmark the syn-
thesized network in a case study inspired by a cattle trade
system analysis [15]; note, this example is aimed to illus-
trate the construction algorithm, rather than to accurately
fit specific data sets. The robustness of the emerging
phenomenology is evaluated in Ref. [37], where statistics
obtained with other choices of parameters (e.g., residence
time distributions, mean path lengths, and weight distribu-
tions) are reported.
Case study.—In this application, we consider jSj ¼ 104

nodes representing farms. The graphG is constructed using
a variant of the uncorrelated configuration model [38].
Following statistics reported in Ref. [15], we use as in and
out degree distributions the power-law Pðkin;outÞ/k�2:5

in;out

(with cutoff at
ffiffiffiffiffiffiffijSjp

to avoid degree correlations [38]).
Weights are also power-law distributed according to
PðwÞ / w�2:5. Interpreting events in N as material dis-
placements, we impose flux conservation at every node so
that in and out strengths balance; i.e.,

P

jwji ¼ P

jwij holds

for almost all i 2 S (in practice, more than 99% of S [37]).
We consider a temporal window W of length T ¼ 103

units (‘‘days’’), with periodic boundary conditions, to gen-
erate N from G. To this aim, we use random walks
with uniformly distributed starting times and locations.
We assign each node i a residence time �i, drawn from
Pð�iÞ / ��3

i for 1 � �i � 60; a walk visiting node i stays
for time �i, plus an additional random delay drawn from a
Poisson distribution with mean �i=5. (The power-law Pð�iÞ
is inspired by Ref. [15]; similar results are obtained for an
exponential Pð�iÞ [37].) Walk lengths are generated using a
Poisson distribution with average 10. Notice that since the
number of graph edges decreases as the construction pro-
ceeds, long walks can seldom be achieved when few edges
remain and the realized distribution accordingly exhibits
an excess of short paths, see Fig. 2.
Three main types of analysis have been proposed in

order to study structural and temporal properties of a time-
resolved transportation network [14,15,21]: (i) statistics of
aggregated networks on various time scales, (ii) distrib-
utions of activity and inactivity periods, and (iii) repetition

FIG. 1 (color online). Schematic representation of the con-
struction procedure: a weighted directed graph G can be re-
garded as a superposition of paths. Unfolding these paths in time
results in itineraries (of variable characteristics) that generate a
temporal network N .
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FIG. 2 (color online). Prescribed (solid line) and realized
(circles) distributions of random walk lengths in the temporal
network N . The discrepancy is due to the decay of the number
of remaining edges in G as the construction proceeds.
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of connection patterns such as temporal paths. Here, we
show that when applied to the synthetic networkN , these
diagnostics proffer characteristics very similar to those in
empirical data.

Real world data exhibit robust heterogeneous behaviors
at all temporal scales, as asserted by power-law distributions
of in degrees, strengths, and link weights [12,14,15]. These
distributions remain almost stationary when integrated over
distinct windows of equal length. As shown in Fig. 3, the
same properties are observed in N . These plots also vali-
date the construction algorithm: statistics aggregated over
the wholeW reveal power-law distributions with slopes in
close agreement with the corresponding ones in G.

Robust heterogeneous features in transportation net-
works have also been observed in activity and inactivity
period statistics, i.e., in the distributions of the periods
during which a node (or a link) is continuously active or
inactive. Such observables typically exhibit broad distri-
butions [14]. Figure 4 reports these distributions for nodes,

obtained from N using various aggregation scales Tagg,

from the most detailed (‘‘daily’’, Tagg ¼ 1) resolution to

coarser time scales mimicking weekly or monthly aggre-
gations (for similar results on links, see Ref. [37]). Activity
distributions reveal power-law behaviors in quantitative
agreement with empirical data [15], with decay exponents
in the same range of values (increasing from �6 to �3 as
the aggregation interval Tagg increases). Moreover, distri-

butions of inactivity periods are broader, more concave,
and extend across all time scales, as in Ref. [15].
In addition to burstiness, the activity in N shows posi-

tive temporal correlations, as can be anticipated from the
nature of the construction. In particular, global activity
correlations can be appreciated by using

CðtÞ ¼ hAð�ÞAð� þ tÞiti � hAð�Þi2ti
Var½Að�Þ� ;

where AðtÞ denotes the total number of events (i, j, t) on
day t and h�iti means time averaging over W . As Fig. 5
(left) shows, CðtÞ is positive for all t in an extended
interval, whereas its analog in a null model, obtained by
reshuffling all links, is 0 for any t � 0. Note that such a null
model is equivalent to a temporal network construction in
which we impose all the random walks to have length 1.
Beside global correlations, local structures can be high-

lighted by exhibiting chronological link sequences that
occur more often than by chance [15,21]. A typical example
is given by �-tolerant temporal paths, i.e., paths composed
of consecutive active links within � days of each other [37].
The number of such paths is much larger in empirical
temporal networks than in reshuffled data [15]. (Note that
only the case � ¼ 1 was considered in Ref. [15].) Figure 5
(right), which shows the number of �-tolerant temporal
paths that occur at least twice in N , possesses similar
features, providing further evidence of the presence of
strong correlations in the synthetic network.
Detailed activity correlations.—The nature of the tem-

poral network construction, which relies on random walks,
suggests that nontrivial local activity correlations should
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FIG. 3 (color online). Distributions of node in degrees, link
weights, and node strengths for networks aggregated over inter-
vals of various lengths. For integration lengths <103, the figures
display distributions obtained by averaging over all correspond-
ing intervals inW . Power laws (thick black lines) with expected
exponents are plotted for reference.

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

τ−3

τ−6

1
3
10
100

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

FIG. 4 (color online). Distributions of activity (a) and inactivity
(b) periods aggregated over intervals of various lengths Tagg ¼ 1,

3, 10, 100, i.e., fractions of nodes that are active at least once in
each of (respectively, inactive during) n consecutive intervals of
duration Tagg (the maximal value of n is T=Tagg).
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FIG. 5 (color online). Left: Autocorrelation function CðtÞ vs t,
averaged over 40 realizations of N , for two distinct walk length
averages and compared to a null model where all links have been
temporally randomized, equivalent to imposing that all walks in
the construction have length 1. Right: Number of �-tolerant
temporal paths (� ¼ 5) occurring at least twice vs their length,
both in N and in the null model.
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also simultaneously emerge at both topological and temp-
oral levels. Indeed, if a node is active at a certain time, then
an elevation of activity should be detected in its topological
and temporal neighborhood. (By contrast, such correla-
tions are nonexistent in a model where all links have
been reshuffled.) Here, we provide quantitative estimates
of these correlations.

In heterogeneous networks such as the current synthetic
N , local activity patterns are extremely diverse and are
hardly captured by global averages such asCðtÞ. Therefore,
prior to averaging, we first need to divide the nodes of S
into categories according to their total activity (defined as
the total number of events in W , starting from the con-
sidered node). The activity at a node in S ranges from 1
to over 200, with average jN j=jSj � 6. Accordingly, we
define a node as ‘‘busy’’ if its integrated activity exceeds a
given threshold, say, e.g., 40 (results are qualitatively inse-
nsitive to this choice). Furthermore, nonbusy nodes are
categorized into level sets of the distance d to the set of
busy nodes B, where d is measured following the edges in
E. Altogether, the categoriesB¼fd¼0g, fd¼1g;...;fd¼4g
account for more than 99% of S.

For each node category C, the correlations between the
activity in nodes of C at time t and in their neighborhood at
time tþ � are then measured by

FC;rð�Þ ¼ haBði;rÞðtþ �Þifi2C;t2W jsoutði;tÞ>0g;

where aEðtÞ ¼ P

j2Esoutðj; tÞ=jEj is the average activity

per node in a subset of nodes E at time t [soutðj; tÞ is the
number of events starting from j at time t], Bði; rÞ is the
ball of center i and radius r, and the average h�i is taken
over all i 2 C and t 2 W such that soutði; tÞ> 0.

Figure 6 displays ‘‘activity spike curves’’ FC;rð�Þ vs � for
two categories, B and fd ¼ 2g, and r ¼ 1, 2. In a null

model where all links are reshuffled (equivalent to a model
built with random walks of length 1), each such curve
would be perfectly flat except at � ¼ 0, where it would
take a larger value. In contrast, each curve has a distinctive
shape here that is almost insensitive to the network real-
ization. Hence, for each category, these curves provide a
characterization of activity correlation patterns in a topo-
logical and temporal neighborhood.
The peaked shape of FC;rð�Þ illustrates how the occur-

rence of activity in the center of a ball is accompanied by an
elevated activity in the ball for a number of days before and
after. The peaks are substantially sharper for smaller balls
(of radius 1), and are instead barely detectable when aver-
aging in the ball of radius 2 aroundB. At large values of �,
FC;rð�Þ approaches a well-defined baseline level of activity.
For r ¼ 1, this baseline is higher around busy nodes than
around fd ¼ 2g, pointing to a higher level of mean activity
in the neighborhood of B, as it can be anticipated.
Concluding remarks.—In this Letter, a simple frame-

work for the construction of temporal networks displaying
bursty, repetitive, and correlated behaviors has been pre-
sented, based on random walks on a predefined aggregated
graph. The construction is sufficiently versatile to adapt to
a wide range of situations, by appropriate tuning of input
parameters. In particular, it would be interesting to apply it
to initial graphs G with community structure. As random
walks tend to be trapped inside communities, the construc-
tion is expected to naturally give rise to the emergence of
temporal communities. Another possible extension would
be to use, instead of random walks as building blocks,
spreading trees of propagation processes on networks.
Our procedure enables one to obtain plausible and real-

istic instances of temporal networks when only the aggre-
gated structure is known. Hence, it can be employed to
compensate for the lack of time-resolved data or to provide
alternative scenarios when access to empirical information
is limited. Moreover, that the synthetic network has
tunable properties is essential to assessing the influence
of time-dependent features on the dynamical processes on
networks, especially when only aggregated information is
available. Finally, structural flexibility also makes it pos-
sible to test the relevance of various definitions of central-
ity measures for nodes and links in temporal networks.
A. B. and B. F. are partly supported by FET Project

No. MULTIPLEX 317532 and by CNRS PEPS Physique
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