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Here we address the question of just how cold one can cool a quantum system, given that the size of the

control forces is limited. We solve this problem fully, within the dual regimes of (i) weak coupling, defined

as that in which the thermalization dynamics of the system is preserved, and (ii) relatively strong control,

being that in which appreciable cooling can be achieved. State-of-the art cooling schemes are presently

implemented in this regime. Given that the maximum rate of coupling to the system is bounded, we

identify a control protocol for cooling, and provide detailed structural arguments, supported by strong

numerical evidence, that this protocol is globally optimal. From this we obtain simple expressions for the

absolute limit to cooling. The methods developed can also be used to obtain optimal controls for a broad

class of state-preparation problems.
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Preparing quantum systems in pure states is important
for potential quantum technologies [1–4]. This task is
strongly linked to ground-state cooling, as both require
that all the entropy is extracted from the system. As
such, there is a great deal of interest in cooling mechanical
resonators, and a number of cooling schemes of increasing
effectiveness have been proposed [5–9]. Since the forces
used to implement cooling are always limited, the question
of what ground-state population can be achieved for a
given maximum control force is of both fundamental and
practical importance. There are two distinct regimes of
cooling: either the dynamics of the thermal relaxation is
preserved under the control (weak coupling to the control-
ler) or it is not (strong coupling). Here we consider optimal
cooling in the former. Within this regime, our analysis is
also applicable to the preparation of arbitrary pure states
under general Markovian noise processes.

The complexity of cooling and state preparation is due to
the interplay of coherent (unitary) and incoherent (irrevers-
ible) dynamics. Furthermore, it is usually impossible to
prove the optimality of control protocols for dynamical
systems in which the state space is unbounded and the
controls constrained. Thus, to determine the fundamental
limits to cooling by quantum control, we adopt a heuristic
approach: we attempt to analyze the structure of the cool-
ing problem in sufficient detail to make a well-justified
guess as to the optimal protocol. We test the optimality of
this protocol by comparison with those found using nu-
merical optimization. We obtain very strong analytical and
numerical evidence that our protocol is globally optimal
and thus determines the absolute dynamical limit to cool-
ing in the dual regimes of weak coupling and high fidelity
control.

In this Letter, we consider the most general setting in
which an N-dimensional ‘‘target’’ system can be cooled:

the target system is coupled to a second, M-dimensional
‘‘auxiliary’’ system via an interaction Hamiltonian HI,
whose eigenvalues we denote by @�j. This Hamiltonian,

coupled with any trace-preserving operation on the auxil-
iary, implements the cooling process [10]. The constraint
we impose on the speed of control is that j�jj � g,8j, for

some rate constant g. For a given experimental scenario,
one calculates the eigenvalues �j by (i) determining the

full Hamiltonian H for the combined target and auxiliary
systems, (ii) removing all contributions to H that are
proportional to the identity when traced over either of the
systems, and (iii) calculating the eigenvalues of the matrix
that remains. While the limit we obtain applies to every-
state preparation scheme, we note that other constraints
may be more appropriate in different scenarios. Our
constraint is appropriate for coherent coupling between
target and auxiliary, and this is used by state-of-the-art
experiments [2–4].
Here we focus on preparing the maximal ground-state

population at a single time, rather than in the steady state.
We do this because (i) the former is essential for quantum
information processing and other tasks that require coher-
ence with which cooling would interfere, and (ii) our
analysis below suggests that the optimal ground-state
population cannot be reached in the steady state.
To proceed we must choose a model of thermalization,

and the Redfield master equation is the obvious choice
[11]: it describes accurately any weakly damped
Markovian quantum system, and weakly damped systems
are the most important for quantum technologies. [The
Redfield master equation equates to the usual quantum-
optical master equations for the harmonic oscillator and
two-level system (qubit) [11].] We assume that the energy
levels of the system are not altered appreciably by the
control interaction, meaning that the energy gaps are
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much larger than g. This is the weak coupling regime and
is what decouples the master equation for the target from
the time-dependent control Hamiltonian. We also choose
the auxiliary system to be ideal: it has large enough energy
gaps to sit in its unique ground state at the ambient tem-
perature T and is not subject to any damping or decoher-
ence (we will show that damping the auxiliary does not
improve cooling). Present cooling methods for ions and
nanoresonators are essentially ideal in the first manner, but
not the second. We note that an undamped auxiliary is only
optimal for cooling because we ignore the practical issue
of its reinitialization, but this is permissible because the
damping of the auxiliary could be controlled by time-
dependent coupling to a third system.

Since the control takes the target out of equilibrium, the
bath induces an irreversible relaxation of the system during
the cooling process, so we must understand how the control
and damping act together. Fortunately, the regime in which
cooling is most useful, and the primary goal of experi-
ments, is that in which the target is cooled very close to the
ground state. This requires that the damping (thermaliza-
tion) rate of the system � satisfies �ð �nþ 1Þ=g � " � 1
(where �n is defined below), allowing us to perform an
analysis to first order in ". Defining DðcÞ� � ðcyc�þ
�cycÞ=2� c�cy for an operator c, the master equation that
describes thermalization of a qubit is _�¼��½ð1þ
�nÞDð�Þþ �nDð�yÞ��, where �n ¼ e�@!=kT=ð1� e�@!=kTÞ.
Here, @! is the energy gap, � is the lowering operator,
and the equilibrium population of the excited state is PT ¼
�n=ð1þ 2 �nÞ. For a harmonic oscillator the master equation
is the same, but with the replacement � ! a, and ! and
�n become, respectively, the oscillator frequency and the
thermal occupation number.

The full system to be studied is thus given by

_� ¼ �ði=@Þ½H tg þH I þH x; �� þL�; (1)

where H tg and H x are, respectively, the target and

auxiliary Hamiltonians, and L� represents the thermal
terms given above. To achieve our goal we must determine
the optimal choice of the auxiliary and interaction
Hamiltonians H x and H I (subject to the constraint
described above) and any trace-preserving operations on
the auxiliary to maximize the target’s ground-state
population PgðtÞ ¼ trð�j0ih0jtg � IxÞ at some final time t.

To arrive at our conjectured optimal cooling protocol, we
examine the relationship between the structure of �, the
role of H x and trace preserving operations on the auxil-
iary, and the thermal dynamics of the target.

First we examine �. We denote the energy levels of the
target by jmi and those of the auxiliary by jjix. The target
is initially in thermal equilibrium, and the auxiliary in its
ground state j0ix. We depict the matrix elements of � in
Fig. 1. Each subblock of this matrix is the full state space of
the auxiliary and corresponds to a single state of the target.
The initial populations appear in the elements labeled by

Aj, and are thus in different subblocks. Thus, if we ignore

the continual thermalization dynamics, the coldest target
state is achieved by transferring all the population to the
subblock in the upper left-hand corner. The essential obser-
vation we need is that cooling is a process of population
transfer between orthogonal subspaces.
ForH x andH I, we can use insights from the geometry

of quantum dynamics [12]. The first of these is that, given
the constraint above, the fastest way to take any initial pure
state to any other state is via a geodesic, the equivalent of a
great circle in real vector spaces. The rotation angle along
this ‘‘great circle’’ is determined by the inner product
between the current and final states. The minimum time
to get from any state j1i to an orthogonal state j2i is � ¼
�=ð2gÞ, and is achieved by the Hamiltonian H ¼ gðj1i�
h2j þ j2ih1jÞ; this ‘‘quantum speed limit’’ can also be
extended to mixed states [13]. This shows that in the
absence of damping (thermalization), the fastest way to
perform the cooling operation is to rotate each of the
excited states Aj to the corresponding unpopulated states

Bj (j > 1) at the maximum rate.

Consider a cooling rotation taking an initial state jAi
to an orthogonal state jBi, so that jc ðtÞi ¼ cos�jAi þ
sin�jBi, where the angle � ¼ gt. The local Hamiltonians
H tg and H x cannot change �. This can be seen by

either (i) examining the matrix in Fig. 1 and applying the
geometry of vector spaces or (ii) observing that H tg and

H x preserve the entropy of either system, and changing
� changes these entropies. In addition, switching to the
interaction picture shows that the effect of any local
Hamiltonian can be obtained by allowing HI to vary with
time. Thus, in optimizing the time-dependent control pro-
tocol we can set the local Hamiltonians to zero.
Using the above observations we can now show the

following.

FIG. 1. (a) Depiction of the density matrix for the joint state of
the target and auxiliary. The auxiliary states are the ‘‘fast’’ index,
illustrated here with M ¼ 4. (b) A schematic depiction of the
geometry of quantum dynamics, showing why rotations in the
local subblocks do not change the angle to go for the cooling
rotation. This rotation is the dashed arrow, and the dashed ellipse
is the motion of a local rotation.
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Theorem: If (i) the target interacts only with the auxil-
iary (no heating) and (ii) the auxiliary has at least the
dimension of the target (M � N), then no completely
positive trace-preserving operation on the auxiliary can
increase the maximum possible ground-state population
of the target at any future time.

Proof: Since M � N, the auxiliary A can transfer the
populations of all target basis states at the maximal rate.
All completely positive trace-preserving operations on A
can be obtained by performing a joint unitary U between A
and a third system S. Now enlarge A to include S, meaning
that the interaction also now includes S. Call the new
auxiliary A0, and the new interaction H0

I. Since U is local

to A0 it cannot change �. And since HI lies within
a strict subset of H0

I, it provides no advantage over the

latter [14]. j
We now consider the role of L, the continual thermal-

ization of the target during the control process. We first
present an argument that gives strong support for the
following simple and rather remarkable statement: all
optimal cooling protocols will achieve the maximal
ground-state population just prior to a time � ¼ �=ð2gÞ,
and will do so only when the system starts in equilibrium.
This argument is as follows. The thermal master equation
gives transition rates between the diagonal elements of �
and decay rates for all off-diagonal elements (in the energy
basis). As soon as the ground-state population Pg rises

above its equilibrium value, there is a net thermal transition
rate out of the ground state to states orthogonal to it. The
population taken out of the ground state can be returned by
transferring it to the auxiliary, which, as established above,
will require a minimum time �. During this time, a further
amount of population Pð�Þ will be taken out by thermal-
ization. However, we will never be able to transfer this
back to the ground state, as this population will again flow
out by the time we have transferred it all back.
Furthermore, since population transfer is a rotation on
the unit sphere, the rate of the increase of Pg goes to

zero as t approaches �. Since the exit rate from the ground
state is nonzero at t ¼ �, no matter how large g=ð �n�Þ, there
will always be a time slightly prior to � at which we lose by
waiting longer. Finally, since the outward transition rate
increases as Pg moves away from equilibrium, Pð�Þ will
only be minimal when Pg starts at its equilibrium value.

This implies that the maximal cooling can only be obtained
instantaneously; no steady-state cooling protocol can
achieve this maximum.

To obtain our proposed optimalH I, we need to examine
where thermalization places the population that leaves the
ground state. For qubits and harmonic oscillators, thermal
transitions occur only between adjacent energy levels, and
so we focus on this here (the analysis readily generalizes).
To first order in � �n� ¼ �� �n=ð2gÞ � 1, population from
A0 goes to A1, and from Bj toCj,8j (see Fig. 1). While the

populations leaked to A1 and Cj are small, to obtain

optimal cooling to first order in " we must optimally
transfer these populations to the ground state. As A1 is
already rotated to B1, and since the leakage is small and
distributed over the transfer path, the leakage to A1 is
already handled optimally. The populations that appear in
the C states can be rotated to additional states in the B
subspace if these are available (if M is large enough). We
can now conclude that (i) nothing can be done to retrieve
the populations in the C states if M � N, and (ii) once the
Hamiltonian is chosen to rotate all the C states to the
ground state, all the first-order leakage is handled
optimally.
If our protocol is indeed optimal, then given the structure

of the thermal transition rates in harmonic oscillators and
single qubits, the maximum cooling can be achieved with
an auxiliary dimension M ¼ 2N � 1 and the majority of
the cooling with M ¼ N. The optimal interaction

Hamiltonian would be H opt
I ¼ GþGy, where

G ¼ g
XminðM;NÞ�1

j¼1

j0; jihj; 0j

þ g
XminðM�1;2N�2Þ

j¼N

j0; jih1; j� N þ 1j; (2)

and jn;mi ¼ jnitg � jmix. This interaction is not linear,

and shows that to achieve the best control under the
constraint, all the eigenvalues of HI must be maximal
(j�jj ¼ g, 8j). For cooling resonators, in which the inter-

action is typically linear, it may be possible to get closer to

H opt
I by using multiple qubits as the auxiliary and intro-

ducing nonlinearities in the resonator degrees of freedom.

To verify the optimality of H opt
I we turn to numerical

optimization [16]. We perform a search over all
Hamiltonians of the joint system, including piecewise-
constant time dependence, under the constraint, for differ-
ent cooling times and different auxiliary dimensions up to
M ¼ 5. The thermal dynamics of a target for N > 2 is
somewhat arbitrary, since it depends on the energy gaps.
Here we just use the master equation for an oscillator
truncated at N [17]; the Boltzmann state for the target is
then the oscillator thermal state, truncated and scaled so
that it is normalized. Our numerical studies confirm all of
the claims made above: (i) our protocol is optimal, (ii) no
more than 2N � 1 auxiliary states are required for cooling
resonators and qubits, and (iii) the best cooling is obtained
just prior to � ¼ �=ð2gÞ. In Fig. 2(a) we show results for a
two-level target with an of auxiliary sizeM ¼ 3 ( �n ¼ 0:5),
and we verified that M ¼ 4 and M ¼ 5 do no better. We
also show two cases with target and auxiliary sizes
N¼M¼4, with �n¼0:5 and �n ¼ 0:1. (With �n ¼ 0:1, this
gives a good approximation to an oscillator, as only the
lowest four states are appreciably populated.) The inset
shows cooling using our protocol up to the optimal time
for ðN;MÞ ¼ ð2; 3Þ, and the circles give numerical
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optimization past this time, confirming that optimal cool-
ing is at t 	 �=ð2gÞ. All these results use �=g ¼ 0:01.

Our analysis so far has assumed an ideal auxiliary
system because we are interested in the absolute limit to
cooling. Experimentally, however, nanoresonators are
presently cooled via auxiliaries with significant damping,
so the question of optimal protocols for this case is an
interesting one. In Fig. 2(b) we perform optimization for an
auxiliary with the damping rate � ¼ g. Remarkably, for a
qubit our protocol remains optimal, and the performance is
essentially unchanged. This also applies to resonators in
the low-temperature limit. For larger N our protocol is no
longer optimal, and the cooling is degraded as expected.

Having obtained numerical verification, we now calcu-
late the final ground-state population for a harmonic oscil-
lator and a qubit. To do this we use the linear versions of
the quantum-jump stochastic master equations that are
equivalent to the thermal master equations [18]. We exploit
the fact that the dynamics is captured to first order in �� by
one-jump trajectories; this technique can be applied to any
dissipation operator [19]. We find that the maximum
ground-state population is reached at t ¼ � (that the maxi-
mum is slightly before � is a second-order effect). For a
harmonic oscillator, taking N ! 1, and thus alsoM ! 1,
the minimum population outside the ground state is

Pmin ¼ ��

4g
�n

�
1þ �n

ð3þ �nÞ
4ð1þ �nÞ2 þ �n2

ð3þ �nÞ
2ð1þ �nÞ2

�
; (3)

where g is the bound on the absolute values of the eigen-
values of the interactionHI, and in general for a resonator it
depends on �n (see below), �n is the average number of
phonons or photons in the target at the ambient tempera-
ture, and the regime of validity is �ð �nþ 1Þ=g � 1. When
�n is small the approximate ‘‘cooling factor’’ is �n=Pmin ¼
4g=ð��Þ 
 1. We note that optomechanical sideband
cooling uses an auxiliary resonator, with the linear cou-
pling Hosc

I ¼ ~gðaþ ayÞðbþ byÞ, where a, b are the target
and auxiliary annihilation operators. For cooling a resona-
tor the size of the state space is N � �n, giving g� ~g
for �n � 1 and g� ~g �n for �n 
 1. Substituting these into
Eq. (3) gives Pmin � � �n=~g for both regimes �n � 1 and
�n 
 1, which is consistent with previous results on the
best cooling possible with optomechanical sideband
cooling [6,7].
For a single qubit, the minimum achievable excited-state

population is

Pmin ¼ ��

4g
PT

�
1� PT=4

1� 2PT

�
;

�

g

ð1� PTÞ
ð1� 2PTÞ � 1; (4)

with PT the excited-state population at temperature T.
For PT � 1 the cooling factor is again 4g=ð��Þ.
The method developed here for finding optimal proto-

cols is not limited to cooling, and can be used for a wide
range of state-preparation problems. As an example, we
use it to determine the minimal error probability for the

preparation of a qubit in the target state ðj0i þ j1iÞ= ffiffiffi
2

p
,

subject to decay at rate � and dephasing at rate �. The
master equation is _�¼�ð�=2ÞDðj0ih1jÞ��ð���z��zÞ.
The minimal probability that the system is found outside
the target state is [19]

Pmin ¼ ��

8g
þ ��

32g
ð2� 5=�Þ: (5)

In conclusion, we have provided a method to obtain opti-
mal protocols for cooling or state preparation—with very
high confidence—in the dual regimes of weak coupling to
the control system, and control that is strong compared to
the noise (high-fidelity control). It is hoped that the struc-
tural insights we have obtained will be useful in under-
standing optimal control protocols for cooling and other
tasks in the strong coupling regime.
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