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We investigate the ground states of antiferromagnetic Mn nanochains on Ni(110) by spin-polarized

scanning tunneling microscopy in combination with theory. While the ferrimagnetic linear trimer

experimentally shows the predicted collinear classical ground state, no magnetic contrast was observed

for dimers and tetramers where noncollinear structures were expected based on ab initio theory. This

striking observation can be explained by zero-point energy motion for even-numbered chains derived

within a classical equation of motion leading to nonclassical ground states. Thus, depending on the parity

of the chain length, the system shows a classical or a quantum behavior.
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Magnetism is ultimately caused by the spin degree of
freedomof the electrons. If phase coherence of the electrons
was preserved, the quantum nature of spin would poten-
tially allow us to encode quantum information in spintronic
devices [1]. Thus, realizing magnetic quantum devices
necessarily involves the understanding of the spin of
nanoscopic structures on a quantum mechanical level.
Antiferromagnetic nanostructures are by far not as well
studied as their ferromagnetic counterparts. This deficiency
lies in the inherent experimental and theoretical difficulties
which have to be overcome to understand antiferromagnets.
To date, even for very simple structures such as the one-
dimensional antiferromagnetic chain, the ground state is
unknown. While neutron diffraction of one-dimensional
antiferromagnets often revealed a simple, i.e., classical,
alternating orientations of the spins [2]—called the Néel
state—half integer spin chains are, for example, expected to
be in a complex entangled ground state [3]. The ground state
becomes even more complex when competing exchange
interactions exist, leading to magnetic frustration, noncol-
linear spin structures [4] or to correlated ground states
predicted by the Anderson resonating valence bond model
[5]. Geometric frustration of the Heisenberg antiferromag-
net on a triangular lattice is the standard example of a
magnetically frustrated system [6–9]. Here, we show that
antiferromagnetic chains display a classical Néel state for
odd-numbered length and an entangled state for even-
numbered length when competing exchange interactions
and spin-orbit interactions are present. Thus, the chains
alternate between opposite nature of the ground states just
by the removal or addition of a single atom.

Lounis et al. showed theoretically for Mn on Ni(100)
that frustration arises from the antiferromagnetic coupling
within the Mn chain competing with the ferromagnetic
coupling of the chain atoms to the substrate. This frustra-
tion can lead to an even-odd effect, where the magnetic
structure crucially depends on the parity of the number of

atoms in the chain [10]. Here, a Ni(110) surface was
chosen instead of a Ni(100) surface as it favors the for-
mation of linear Mn chains due to its crystal symmetry, and
lateral manipulation of adatoms on fcc(100) surfaces is not
feasible [11] but has been realized on fcc(110) surfaces
[12]. Magnetically, sole consideration of the predominant
antiferromagnetic coupling within the Mn chain leads to
an antiparallel order of the magnetic moments. Therefore,
odd-numbered chains exhibit a net magnetic moment, in
contrast to even-numbered ones. Switching on the weaker
ferromagnetic coupling between the atoms of the chain
and the substrate thus acts differently on the two kinds of
chains. Odd-numbered ones retain their collinearity, and
the net moment of the chain aligns with that of the sub-
strate, which is in-plane due to shape anisotropy. Even-
numbered chains, however, develop a more complex
ground state. In a presumed collinear state, the total mag-
netic exchange energy of the Mn chains to the ferromag-
netic substrate is independent of the direction of the Mn
moments. It can, however, be lowered when a noncollinear
spin-structure develops. While magnetic exchange energy
has to be paid to tilt the spins of the even-numbered chain
from the ideal collinear state, a net spin of the chain
develops that points in the direction of the substrate
magnetization, thus giving rise to an energy gain due to
the exchange with the substrate.
Mn chains of lengths up to six atoms on aNi(110) surface

were simulated using the Korringa-Kohn-Rostoker Green
function method [13,14] as expressed within density func-
tional theory (DFT) taking into account noncollinear spin
structures within the chains and the substrate and relaxa-
tions [10,15]. The results were then mapped to a classical
Heisenberg model in which magnetic exchange energies
between first-neighbor atoms were taken into account [16].
As shown before for chains on Ni(001) [10], this model
catches the important features observed in the ab initio
calculations.
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Figure 1 illustrates the ground states of linear dimer,
trimer, and tetramer chains on Ni(110) calculated within
this framework. As expected, the trimer chain is in a col-
linear magnetic state where the net spin of the chain is
aligned to the substrate magnetization. The even-numbered
chains show a noncollinear magnetic configuration with
moments strongly deviating from the substrate magnetiza-
tion direction. Neglecting spin-orbit interaction, the mag-
netic moments of the chains can be rotated coherently
around the direction of magnetization of the substrate
without affecting the total energy [17]. When spin-orbit
interaction is taken into account, the rotational degeneracy
is lifted and the Mn moments prefer an out-of-plane ori-
entation, while Ni(110) is magnetized in the surface plane
[18]. Thus, two degenerate ground states are predicted.

So far there has been no experimental report on this
effect. Currently, only spin-polarized scanning tunneling
microscopy (Sp-STM) can reveal antiferromagnetism on
the atomic scale [19,20]. Low-temperature STM has been
used to investigate the quantum nature of small magnetic
clusters [21–26]. Furthermore, STM is capable of moving
adatoms, thus offering the possibility of assembling and
probing at the same time [12]. In this work a home-built
STM operating at 4.2 K and under ultrahigh vacuum con-
ditions was used in combination with W-tips coated with
10 monolayers (ML) of Fe, 15 ML of Mn, or 30 ML
of Co for the spin-polarized measurements.

We first deposited 0.02 ML Mn with the sample held
at 4.2 K, showing primarily single Mn adatoms [see
Fig. 2(a)]. Mn chains with the intrinsic nearest-neighbor
spacing of 2.49 Å were then assembled by atomic manipu-
lation along the close-packed h1�10i direction of the
substrate [see Fig. 2(b)]. The assembly was limited to
tetramers, as longer chains were unstable due to the large
lattice mismatch between Mn and Ni [27]. Tunneling
spectroscopy was used to determine the electronic struc-
ture of the chains revealing no resonances below 1 eV (see
Supplemental Material [28]). Using Sp-STM with in-plane
magnetized Fe coated tips, we investigated the magnetic

structure of Mn chains on the atomic scale. For this, we
chose a bias voltage of 350 mVas it revealed a strong spin
contrast, as shown later, and is far away from the experi-
mentally observed standing waves within the chains (see
Supplemental Material [28]). In general, the chains appear
darker than the Ni substrate in dI=dU images at this bias
voltage, as their local density of states is lower. Thus, we
focus only on the contrast within the Mn chains as only this
can be related to a magnetic signal. For trimers, the mea-
surement revealed a strong spin contrast along the chain
[see center panel in Fig. 3(b)]. Similarly, the line section
along the trimer axis displays two minima at the edge
atoms and a maximum in the center. This is in full agree-
ment with predictions of antiferromagnetic odd-numbered
chains displaying a simple collinear spin structure (see

FIG. 1 (color online). DFT ground states of antiferromagneti-
cally coupled Mn chains on Ni(110). While the linear trimer
shows a collinear ferrimagnetic order with magnetic moments
(blue vectors) parallel to the Ni magnetization (red arrow), even-
numbered chains show a noncollinear magnetic structure.
Without spin-orbit interaction, the magnetic moments can be
coherently rotated around the Ni magnetization without chang-
ing the energy as depicted by the black circles.

FIG. 2 (color online). STM images of Mn atoms on Ni(110).
(a) Sample with 0.02 ML Mn=Nið110Þ deposited at 4.2 K show-
ing mainly isolated atoms. (b) Formation of a linear Mn trimer
by atomic manipulation.

(a) (b) (c)

FIG. 3 (color online). Sp-STM investigation of linear Mn clus-
ters on Ni(110). (a) Topographic images of a Mn dimer, trimer
and tetramer (from top to bottom). (b) Corresponding Sp-STM
results all obtained with the same Fe-coated tip at 350 mV and
6 nA. (c) Linescans along the dashed lines in the corresponding
images (b) including the calculated local spin density of states of
the trimer (dashed line in the center panel).
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Fig. 1). Note, however, that the distance between the
minima appears slightly larger than the geometrical dis-
tance between the Mn atoms assuming a distance of
0.249 nm corresponding to the distance of the adsorption
sites on the Ni(110) surface. This is mainly caused by the
fact that STM probes the electronic states about 0.5–1 nm
out in the vacuum, i.e., the evanescent states. This leads to
sizable smearing of atomically sized objects and to an
increase in apparent lengths and widths of the chains
when compared to a hard sphere model. For an antiferro-
magnetic trimer, the two outer atoms appear as dips and the
central one as a peak and upon measuring the evanescent
states, the positions of minima shift outward due to smear-
ing. This experimental finding can easily be reproduced by
calculating the local spin density along the trimer plotted
as a dashed line in the center panel in Fig. 3(c).

The dimer [upper panels in Figs. 3(b) and 3(c)] does not
show a contrast in agreement with the predictions. In the
calculated magnetic configuration, the projection of the
individual Mn magnetic moments on the substrate magne-
tization are identical. The tetramer also does not display a
strong contrast [see lower panels in Figs. 3(b) and 3(c)]. On
closer inspection, the line section shows a small depression
of the dI=dU signal at the edge atoms of the chain [arrows
in Fig. 3(c)]. This is expected for the tetramer, as the edge
atoms align more to the Ni substrate moments. Thus, all
chains show the expected projections of the magnetic
moment along the substrate magnetization.

Dimers and tetramers were suggested to have a noncol-
linear magnetic structure and, as a consequence, they
should display a more complex spin contrast when using
a tip magnetized perpendicular to the Ni moments. In
experiments with different Mn tips of random magnetic
orientation, Fe tips with arbitrary in-plane orientation, or
Co tips with out-of-plane orientation, we, however, never
observed such a contrast. This rather suggests that the
expectation value of the Mn moments perpendicular to
the magnetization direction of the substrate does not vary
along the even-numbered chains under the experimental
conditions. Possibly, spin fluctuations too fast to be
observed with STM are present, such that the noncollinear
components of the magnetization of the Mn chain are
averaged to zero within the typical observation time
(10 ms per pixel). Such spin fluctuations might be caused
by thermal excitation or by inelastic spin scattering with
the electrons of the tunneling current.

We, however, argue in the following that when treating
the energy of the spin configuration within classical equa-
tions, we do not predict a classical ground state but a non-
classical state due to zero-point motion even at zero
temperature [5]. The complexity of the magnetic interac-
tions in noncollinear structures with spin-orbit interactions
hinders the use of ab initio methods beyond DFT, e.g., a
time-dependent procedure (see for example Refs. [29,30]).
Also a model Hamiltonian of a quantum Heisenberg system

with localized spins and exact diagonalization [21] describ-
ing effects like magnetization tunneling [31] cannot be used,
as it neglects the itinerant nature of the system. Instead, we
take a new pathway to describe even-numbered chains
following ideas of Leggett et al. [32] in the framework of
the ‘‘spin-boson’’ problem. By integrating out the electronic
degrees of freedom described within DFT, we compute the
interatomic exchange interaction and the intra-atomic spin-
orbit interaction. The parameters extracted from DFT are
then fed into classical equations of motion. The resulting
equations are then treated in the limit of quantummechanics
to investigate the spin-dynamics of the system.
The equation of motion [33] for a magnetic atom with-

out damping is given by

@M

@t
¼ ��M�Heff ; (1)

where Heff is the effective magnetic field acting on the
magnetic momentM, and � is the gyromagnetic ratio.Heff

can be determined from the total energy according to

H eff ¼ �rME

�
; (2)

where E is the total energy corresponding to a Heisenberg
Hamiltonian, which includes magnetic anisotropy and in
which the magnetic exchange energies between first neigh-
bors are considered. For the Mn dimer we find

Eð�;�Þ ¼ �J1 cosð2�Þ � 2J2 cosð�Þ
þ 2Ksin2ð�Þcos2ð�Þ: (3)

Here, � is the polar angle of Mn magnetization to the
magnetization direction of the Ni substrate, and � is the
azimuthal angle of the magnetization direction of the Mn
atoms with respect to the easy axis. The Ni moments were
treated as rigid. J1 and J2 are the exchange constants for
Mn-MnandNi-Mn exchange, respectively.K is the uniaxial
anisotropy per adatom of the Mn dimer for rotation around
the Ni magnetization direction. The equation describes the
coupled dynamics of � and � in a harmonic potential for
small deviations from the ground state with�0 ¼ 0�, 180�.
From our ab initio calculations, we determine J1 ¼

�221:4 meV, J2 ¼ 116:8 meV, and K ¼ �0:3 meV,
which result in �0 ¼ 75� and an easy direction of the Mn
moments along the surface normal. The energy barrier to
coherently and adiabatically rotate the moments of the Mn
atoms is proportional to the anisotropy barrierKmultiplied
by 2sin2ð�0Þ ¼ 0:56 meV. When solving the coupled
equation of motion in � and � around the ground state,
we obtain an eigenfrequency ! for the precession of the
magnetic moments. This precession involves both � and �
(see, e.g., Ref. [34]). It corresponds to a periodic oscillation
of the two variables in a local well of the potential. It can be
treated to lowest order as a harmonic oscillator. This
frequency defines thus a zero-point fluctuation energy E0,
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E0¼1

2
@!¼g�B

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4Kcosð2�0Þ½4J1cosð2�0Þþ2J2cosð�0Þþ4Kcosð2�0Þcos2ð�0Þ��½4Kcosð�0Þsinð2�0Þ�2;
q

(4)

where g � 2 is the g factor and �B the Bohr magneton.
Surprisingly, the exchange interactions also enter the
zero-point fluctuation energy, leading to E0 of the order
of 8.9 meV. Thus, in the ground state, the magnetic
moments have a much larger fluctuation energy than the
anisotropy barrier, and the system can overcome the
barrier.

Similar equations for the tetramer also reveal that the
zero-point motion is large enough to overcome the anisot-
ropy barrier (see Supplemental Material [28]). In the
framework of the ‘‘spin-boson’’ problem, this case repre-
sents the situation where the matrix element for tunneling
between the two localized states (mediated by the ex-
change interaction) is larger than the barrier (mediated
by the spin-orbit interaction). In this pathological case of
the ‘‘spin-boson’’ problem, the states do not localize in one
or the other classical state even at T ¼ 0 K [32]. It is
crucial and very instructive to analyze the previous equa-
tion: The barrier height and E0 depend on both the anisot-
ropy and the exchange energies. While the maximal value
of the barrier height is limited by the anisotropy, the zero-
point energy strongly depends on the exchange constants.
One notices that for typical values of the exchange being
much larger than the anisotropy, the zero-point energy is
also much larger than the anisotropy. By decreasing J1
and omitting J2 (paramagnetic substrate), the zero-point
energy decreases quickly. Thus at the limit of weak inter-
actions between the adatoms and a finite barrier due to
anisotropy, the system exhibits a localized, i.e., Néel,
ground state [35].

In conclusion, we have shown that although there is a
finite magnetic anisotropy energy acting as a potential
barrier between the degenerate DFT ground states in
even-numbered chains, a zero-point energy provides a
mean for fluctuations between the two degenerate states.
The latter one is found to be surprisingly large and should
be considered when describing antiferromagnetic nano-
objects. Just by adding or removing one atom of the
chain—changing parity—the system changes its magnetic
behavior completely and behaves classically. This is due to
the net spin of the chain coupling to the macroscopic
magnetization of the Ni substrate. We believe that our
findings can show a path to create magnetically stable
antiferromagnetic structures, i.e., to raise the blocking
temperature. This intriguing result is obtained without
requiring a quantum Heisenberg model but by treating
the equation of motion for the magnetic moments as a
quantum equation. In this respect, we believe that this
approach is general and could lead to a better understand-
ing of the dynamics of small spin systems.
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