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We have measured the persistent current in individual normal metal rings over a wide range of magnetic

fields. From this data, we extract the first six cumulants of the single-ring persistent current distribution.

Our results are consistent with the prediction that this distribution should be nearly Gaussian for diffusive

metallic rings. This measurement highlights the sensitivity of persistent current to the mesoscopic

fluctuations within a single isolated coherent volume.
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One of the fundamental archetypes in mesoscopic phys-
ics is a system whose volume is sufficiently small that
electrons remain quantum coherent within it, yet suffi-
ciently large and complex that its energy spectrum cannot,
in practice, be calculated exactly. Such a coherent volume
can be realized in a microfabricated metal device cooled to
sufficiently low temperatures. The electronic spectrum of
such a device will depend upon the angstrom-scale disor-
der within the metal, which is beyond the control of most
fabrication techniques. As a result, the device’s spectrum
(and all related physical quantities) will be drawn ran-
domly from an ensemble representing the possible realiza-
tions of the disorder within nominally identical (i.e.,
lithographically identical) devices.

The sample-to-sample fluctuations that result from this
randomness are characterized by a distribution functionPx.
Here, x represents any physical quantity that depends upon
the disorder, for example, the conductance g or the persis-
tent current I. These distributions play an important role in
our understanding of how electrons flow through disor-
dered materials, for example, in Anderson localization and
the scaling theory of conductance [1–3]. For metallic
samples (i.e., with mean conductance hgi � 1 in units of
e2=h) calculations predict that Pg and PI approach a

Gaussian distribution as hgi ! 1 [4–9]. Deviations from
Gaussianity at finite (but large) hgi reflect the approach of
Anderson localization and the ‘‘breakdown’’ of single-
parameter scaling that is due to a finite-sized system’s
vestigial sensitivity to the particular details of its micro-
scopic disorder [3,4].

Several measurements of Pg have been made in systems

with hgi & 1, including ballistic semiconductor quantum
dots [10–12] and semiconductor wires near the localization
threshold [13]. In this regime, experiments have found
agreement with theory. However, in metallic samples,
experiments to date have largely been confined to mea-
surements of hhg2ii, the second cumulant of Pg. These

measurements of hhg2ii have found excellent agreement
with theory in a broad range of circumstances [14–18].
However, little is known experimentally about mesoscopic

fluctuations (of g or any other quantity) in metals beyond
the second cumulant [18].
Measuring the full distribution of mesoscopic fluctua-

tions in a metal device is challenging. In part this is because
most experiments detect g, and so must attach leads to the
device. These leads are much larger than the electrons’
phase coherence length L’, and so contain a large number

of coherent volumes that contribute in some degree
[14,19,20] to the measured g. (The contribution from the
leads is less important when g & 1, as in Refs. [10–13].)
Since the fluctuations of each of these coherent volumes are
assumed to be independent, higher cumulants of Pg will

tend to be suppressed in such ameasurement, with the result
that the observed fluctuations will appear more Gaussian
than the actual Pg. The impact of the leads can be reduced

by measuring Pg in long wires (i.e., much longer than L’)

but this ensures that the wire itself contains many coherent
volumes, with the result that the observed fluctuations will
again appear more Gaussian than Pg [18].

However, it is possible to measure the mesoscopic fluc-
tuations of a single coherent volume by detecting the per-
sistent current I in an isolated metal ring. This has been
challenging in the past owing to the small signals involved
[21], but it was recently shown that micromechanical tor-
sional magnetometers can measure persistent current with
very high sensitivity and low back-action [22,23]. This
technique has been applied primarily to arrays of metal
rings, with the result that the first two cumulants hhIii and
hhI2ii of PI were measured with high precision over a wide
range of parameters [23,24]. However, the sensitivity
achieved in Ref. [23] (as well as in other studies of individ-
ual metal rings [25,26]) did not allow for measurements of
individual rings with adequate signal-to-noise ratio (SNR)
to resolve the higher cumulants of PI.
Here we describe measurements of the persistent current

in a large number of individual rings. From these measure-
ments we extract the first six cumulants of PI, as well as
other higher-order statistical properties of the persistent
current. This is achieved by improving the SNR of the
technique described in Refs. [22,23], and by combining
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data from more than 400 effectively independent measure-
ments. We find that our results agree with theoretical
predictions to within the sensitivity of the measurements.
Specifically, we find that the first six cumulants of PI are
consistent with a Gaussian distribution. The small devia-
tions from Gaussianity that are predicted by theory are too
small to be detected in our experiment.

A typical device is shown in Fig. 1. It consists of a
single-crystal Si cantilever supporting a single Al ring.
The fabrication of these devices has been described pre-
viously [22,23]. The rings were fabricated via standard
electron-beam lithography and were evaporated from a
99.999% purity Al source onto a Si substrate with a native
oxide. In addition to the rings, Al wires and contact pads
were co-deposited onto the same wafer to allow for trans-
port characterization of the metal. Details of these trans-
port measurements are given in the Supplemental Material
[27]. These measurements show that L’ > 2�r (r is the

rings’ mean radius) for the temperatures at which the
persistent current is measured. They also provide the elec-
trons’ diffusion coefficient D ¼ 0:020� 0:0015 m2=s.

The procedure for measuring the persistent current (PC)
has also been described previously [23]. The cantilever’s
displacement is monitored by a laser interferometer. The
signal from the interferometer is used to drive the cantile-
ver in a phase-locked loop, allowing the cantilever’s reso-
nance frequency!m to be monitored. In the presence of an
applied magnetic field B, the persistent current I circulat-
ing in the ring produces a torque on the cantilever. This
torque changes !m, and I is inferred from this change.
Details are given in the Supplemental Material [23,27].

Measurements of the PC were made at temperatures
320 mK< T < 365 mK, and magnetic fields 4 T<B<
9 T (applied at an angle � ¼ 45� relative to the rings’
plane). This is well above the critical field of Al, ensuring
that the rings are in their normal state. The large B is

required to produce a detectable torque. It also simplifies
the data analysis, as large B within the metal of the ring
strongly suppresses the effect of electron-electron interac-
tions on the PC [24], allowing us to compare our results
to independent-electron theory (though we note that for
large hgi interactions are not predicted to make PI

non-Gaussian [6–8]).
Measurements were made on eight different rings, with

each ring on a separate cantilever. The full data sets from
each ring, as well as the rings’ dimensions and other
properties, are shown in the Supplemental Material [27].
A typical measurement of IðBÞ for one of these devices
(ring #6) is shown in Fig. 2. The rapid oscillations in
Figs. 2(a) and 2(b) are due to the Aharonov-Bohm (AB)
effect: as B is varied, the magnetic flux � ¼ BA� sin�
through the ring varies, causing IðBÞ to oscillate with
period Bper ¼ �0=ðA� sin�Þ. Here A� ¼ �r2 is the typical

area enclosed by the electrons in the ring, and �0 ¼ h=e.
No higher harmonics of the AB oscillations were observed
above the noise floor of the measurement.
The AB oscillations’ amplitude (and upon closer inspec-

tion, their phase) varies on a field scale larger than Bper.

These aperiodic modulations result from the fact that
sweeping B also varies the magnetic flux in the metal of
the ring �m � 2�rwB, where w is the ring’s width.
Because the ring represents a single coherent volume, its
spectrum is expected to be randomized each time �m

changes by ��0 [28]. The ergodic hypothesis identifies
this randomization with a new realization of the

FIG. 1. Scanning electron micrograph of a cantilever with a
single ring similar to the ones used in the experiment. Inset:
magnified view of the ring. These images show the cantilever
and ring prior to their release from the underlying SiO2 layer.
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FIG. 2 (color online). Typical measurements of the persistent
current in a single ring. (a) A small section of IðBÞ, the persistent
current as a function the applied magnetic field. The oscillations
are due to the Aharonov-Bohm effect, while the aperiodic modu-
lation arises from flux inside the metal of the ring. (b) Red curve:
IðBÞ over a broader range of magnetic field. Blue curve: the
envelope of IðBÞ. (c) The quadrature amplitudes IðþÞ (black) and
Ið�Þ (pink). The envelope in (b) and the quadratures in (c) were
extracted by applying the Hilbert transform to the red trace in (b),
as described in the Supplemental Material [27].
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microscopic disorder [28], so measurements of a single
ring over a wide range of B can be interpreted as measure-
ments over a large number of lithographically identical
rings. This allows us to use the eight physically distinct
rings to measure a much larger number of effectively
independent rings. As described below, the large number
of effective samples is crucial for making an accurate
estimate of the higher cumulants of PI [29].

Based on these considerations, at large magnetic fields
the persistent current is expected to take the form [24]

Ið�m;�Þ ¼ IðþÞð�mÞ sinð2��=�0Þ
þ Ið�Þð�mÞ cosð2��=�0Þ: (1)

Theory makes three predictions concerning IðþÞ and Ið�Þ
(the quadrature amplitudes of the AB oscillations). The
first is that they are stochastic functions of �m character-
ized by a correlation function:

hIðþÞð�mÞIðþÞð�mþ��mÞi¼hIð�Þð�mÞIð�Þð�mþ��mÞi
¼hI2iCð��m=�cÞ (2)

that decays rapidly for ��m � �c, where �c is the
correlation scale, which is typically a few times �0. Both
�c and the normalized correlation function 0 � CðxÞ � 1
have been calculated in Ref. [24].

The second prediction is that the distribution of these
quadrature amplitudesPIðþÞ ¼ PIð�Þ ¼ PI is Gaussian in the
limit hgi ! 1 [6–9]. For finite but large hgi it is predicted
[6,8,9] that the nth normalized cumulant (defined below) of
the persistent current �n � g2-n. In our samples g� 104, so
these predicted deviations from Gaussianity are well below
our present sensitivity (and we note that some �n are sup-
pressed still further by a large magnetic field [9]).

Last, correlations between IðþÞ and Ið�Þ are predicted to
be absent [24].

To test these three predictions, we first use the IðBÞ data
from one sample (ring #6, see Supplemental Material [27]
for the full data sets and ring parameters) to determine the
normalized autocorrelation of the persistent current,
hIðBÞIðBþ�BÞi=hI2i. The result is plotted in Fig. 3, and
shows AB oscillations whose envelope initially decays on a
field scale that is a few times �0=2�rw, in qualitative
agreement with the discussion above. After this initial
decay the envelope does not approach zero, but instead
undergoes apparently random fluctuations. These fluctua-
tions are due to the finite size of the data set, and are
discussed below.

We can make a more quantitative comparison with
theory by fitting the autocorrelation data in Fig. 3 to the
prediction [24] that it should consist of AB oscillations
whose envelope is given by Cð�B=BcÞ, where Bc ¼
�c=2�rw. The resulting fit is shown as the red line in

Fig. 3. The fit parameters are Bð6Þ
c ¼ 37 mT and Bð6Þ

per ¼
25 mT (where the superscript denotes the ring no.), in good
agreement with the dimensions of the ring. The

autocorrelation data from the other seven rings showed
comparable agreement with the theoretical prediction,
although the fitted values of Bc varied from ring to ring

(all values of the BðiÞ
c are given in the Supplemental

Material [27]). This analysis provides us with two useful
results. The first result is the agreement between the mea-
sured and predicted form of CðxÞ, which justifies our use of
the analytic expression [24] for CðxÞ in the analyses below.
The second result is the determination of the correlation

field BðiÞ
c for each ring, which will also be used below.

To determine the form of the distribution PI from our
measurements, we begin by applying the Hilbert transform
to the IðBÞ data from each ring. This provides the

quadrature amplitudes IðþÞðBÞ and Ið�ÞðBÞ, as shown in
Fig. 2(c). It is then straightforward to compute the cumu-

lants of IðþÞ and Ið�Þ, e.g., from their moments. Since there

is no physical distinction between IðþÞ and Ið�Þ when
�m � �0, we consider the average of their cumulants:

hhInii � 1
2 ðhhðIðþÞÞnii þ hhðIð�ÞÞniiÞ. To account for varia-

tions between the rings (e.g., of D, r, and T), the contri-
bution to hhInii from each ring is normalized by the
variance hhI2ii of that ring, giving the normalized cumulant

�n � hhInii=hhI2iin=2 for the entire data set.
The first several �n are plotted as blue circles in Fig. 4(a).

The prediction that PI is Gaussian (corresponding to
�n ¼ 0 for all n 	 3) is indicated by the black circles in
Fig. 4(a). The data appear qualitatively consistent with a
Gaussian distribution; however, to make a meaningful
comparison between experiment and theory we estimate
the uncertainty in these values. The two most important
sources of uncertainty in the measurements of �n are the
finite SNR of the IðBÞ data and the finite size of the data set
from which the �n are calculated. We estimate the impact
of the former by applying standard error-propagation
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FIG. 3 (color online). Autocorrelation of the persistent current
in a single ring. The blue curve is the normalized autocorrelation
of the IðBÞ data from ring #6, while the red curve is a fit to
theory. Only data with �B< 0:3 was used for the fit. The
expected error in the autocorrelation (due to the finite size of
the data set) is indicated by the dashed horizontal lines. Similar
behavior was observed in all eight rings.
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techniques to the known uncertainty in each IðBÞ measure-
ment. This procedure is described in the Supplemental
Material [27], and leads to the blue error bars in Fig. 4(a).

The finite size of the data set leads to a statistical
uncertainty ��n in the estimate of each �n. If the data

sets for IðþÞðBÞ and Ið�ÞðBÞ each consisted of uncorrelated
data points, then values for the ��n could be found in
standard statistics references. However, it is clear from
Figs. 2(c) and 3 that each quadrature of the AB oscillations
contains correlations that are characterized by the function
Cð�B=BcÞ. In this case the ��n depend upon the form of
CðxÞ, the value of Bc, and the value of Bspan, the range of B

over which the PC is measured [29],

��n � h�2
ni1=2 ¼

�
n!cn

Bc

Bspan

h�2in
�
1=2

;

cn ¼
Z 1

�1
ðCðxÞÞndx (3)

(where the dependence of Bc, Bspan, and cn upon the ring

no. has been suppressed). The black error bars in Fig. 4(a)
correspond to the ��n calculated from Eq. (3). Since
��n < 1 only for n < 7, we plot the results only up to �6.

In addition to calculating the cumulants of PI from our
data, we can also plot the measured PI in the form of a

histogram of the IðþÞðBÞ and Ið�ÞðBÞ data. To reduce over-

sampling artifacts in this histogram, we first bin the IðþÞðBÞ
and Ið�ÞðBÞ data into a smaller data set. We choose the size
of this smaller data set to correspond to the number of
effectively independent data points in the entire data set

[29] (i.e., from all eight physically distinct rings): Neff ¼
2
P

8
i¼1 B

ðiÞ
span=c

ðiÞ
n BðiÞ

c � 412 (the factor of 2 in this expres-
sion arises from the two quadratures). Here we have used
n ¼ 2 somewhat arbitrarily, but we note that Neff depends
only weakly upon the choice of n. As in the calculations of

the �n, the I
ðþÞðBÞ and Ið�ÞðBÞ data from each different ring

are normalized by their own variance to account for dif-
ferences among the rings. The histogram of the resulting
data set is shown in Fig. 4(b), along with the no-free-
parameter prediction that this histogram should be
Gaussian with zero mean and unit variance.
We can use these results to understand the apparently

random fluctuations of the autocorrelation data in Fig. 3. At
large�B, the data are expected to be uncorrelated [i.e.,CðxÞ
approaches zero for large x]. However, the standard error of
the autocorrelation of a data set consisting ofN independent

samples is [30] �C ¼ 1=
ffiffiffiffi
N

p
. The data set for ring #6

contains Nð6Þ
eff ¼ 44 independent samples; thus at large �B

the envelope of the autocorrelation in Fig. 3 should have a
typical value� 0:15. This value is indicated by the dashed
lines in Fig. 3, and is in agreement with the data.
Last, we test our data for correlations between the

quadrature amplitudes. From the IðþÞðBÞ and Ið�ÞðBÞ data
it is straightforward to calculate the experimental value

of �þ� � covðIðþÞ; Ið�ÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhIðþÞ2iihhIð�Þ2ii

q
which is pre-

dicted [24] to be zero. From our data we find �þ� ¼
0:02� 0:05, where the uncertainty arises from the finite
size of the data set. This result is consistent with the

prediction that IðþÞðBÞ and Ið�ÞðBÞ should be independent
of each other.
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FIG. 4 (color online). The measured distribution of persistent
current. (a) Cumulants of the persistent current distribution,
calculated from the combined data for all eight rings. Blue
circles are the measured cumulants, and black circles are the
cumulants expected for a Gaussian distribution. Black error bars:
statistical uncertainty from the finite sample size. Blue error
bars: statistical uncertainty from the finite signal-to-noise ratio.
(b) Histogram of the observed persistent currents. To reduce
oversampling artifacts, the data is first binned to give data points
that are approximately independent. The solid line is the no-free-
parameters prediction.
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