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Topological crystalline insulators possess electronic states protected by crystal symmetries, rather than

time-reversal symmetry. We show that the transition metal oxides with heavy transition metals are able

to support nontrivial band topology resulting from mirror symmetry of the lattice. As an example, we

consider pyrochlore oxides of the form A2M2O7. As a function of spin-orbit coupling strength, we find

two Z2 topological insulator phases can be distinguished from each other by their mirror Chern numbers,

indicating a different topological crystalline insulators. We also derive an effective k � p Hamiltonian,

similar to the model introduced for Pb1�xSnxTe, and discuss the effect of an on-site Hubbard interaction

on the topological crystalline insulator phase using slave-rotor mean-field theory, which predicts new

classes of topological quantum spin liquids.
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Introduction.—A large class of materials has been pre-
dicted to possesses a nontrivial Z2 topological classi-
fication [1–5]. These materials have gapless surface modes
protected by time-reversal symmetry. However, crystal
symmetries can also impose topological features, which
leads to an additional source of topological protection in
materials possessing these symmetries [6–10]. One class of
such insulators is topological crystalline insulators (TCI)
with surface states protected by either point [11] or mirror
symmetry [12]. The recent discovery of TCI in the narrow
band semiconductor Pb1�xSnxTe=Se has paved the way to
a new class of topological materials beyond the Z2 topo-
logical insulators (TI) [13–15]. However, it is important
to extend the domain of candidate TCI to include other
materials, such as those with spontaneously broken time
reversal symmetry (TRS) through magnetic ordering resul-
ting from electron interactions.

In this Letter, we show that transition metal oxides
(TMO) with 5d orbitals are candidate materials for a
TCI, extending the list of potential TCI materials to include
those where interaction effects could play a role in driving
qualitatively new phases and phenomena. Pyrochlore iri-
dates, such as A2Ir2O7, where A is a rare-earth element,
have been shown to possess a nontrivial Z2 invariant
[16–18] so long as the strength of direct d-d hopping
relative to indirect hopping via the oxygen orbitals does
not fall within a certain window [19] and time-reversal
symmetry is not broken [20]. We show that surface states
exist even if TRS is broken by the application of a mag-
netic field or from local magnetic moments induced by
interactions. We argue that these surface sates are protected
by mirror symmetry, and originate from a nonzero mirror
Chern number [7,12]. This nontrivial band topology leads
to a new topological Mott phase in the regime of inter-
mediate Hubbard interaction where the charge degrees of
freedom on the surface become gapped, but the TCI struc-
ture of the gapless surface spin modes remain intact (a type

of topological quantum spin liquid): the topological crys-
talline Mott insulator (TCMI).
Model.—The transition metal oxide A2Ir2O7 has a pyro-

chlore lattice structure (see Fig. 1) composed of corner
shared tetrahedra of Irþ4 ions (d-shell filling f ¼ 1=2).
Each Irþ4 is surrounded by an octahedral cage of oxygen
which splits the atomic d levels into a lower t2g and higher

eg manifold; spin-orbit coupling further acts within the t2g
states to create eigenstates of total angular momentum.
A minimal tight-binding model describing hopping of
electrons between transition ions is

Hd ¼
X
i

t��
0

i dyi�di�0 þX
hiji

ðT��0
o;ij þ T��0

d;ij Þdyi�dj�0 ; (1)

where first term contains both onsite energy "d and local
spin-orbit coupling with strength � as ti ¼ "d � �l�s,
and the second term describes nearest-neighbor hopping
between transition metal ions [16,17,19]. Here, � is a
collective index including both t2gðyz; zx; xyÞ orbitals and
spins; To;ij, Td;ij are matrices for the oxygen mediated and

direct hopping integrals, respectively. For simplicity, we
consider only oxygen mediated hopping of electrons which
captures the correct physical picture over a wide range
of direct d hopping values [19]. Outside of this range, the
system is gapless and a Weyl semimetal can result from
interaction effects [19,21]. Physical pressure may provide a
route to tune between these two interesting regimes.
Because of the cubic structure of the lattice (face cen-

tered cubic with four point basis), the lattice is symmetric
with respect to a variety of mirror planes; two are shown
in Fig. 1. Crystal surfaces such as (010) are symmetric
about the mirror planes. We show they support topologi-
cally protected gapless surface modes. The mirror operator
transforming orbitals and spin about the mirror plane (�101)
is M ¼ R �U, where R transforms the orbitals in local
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coordinates of each rotated octahedra andU rotates spin by
180� about an axis normal to the mirror plane,

R ¼

r1 0 0 0

0 0 0 r2

0 0 r3 0

0 r4 0 0

0
BBBBB@

1
CCCCCA; U ¼ iffiffiffi

2
p �1 1

1 1

 !
; (2)

where ri is a reflection matrix transforming local t2g orbi-

tals on sites i ¼ 1; . . . ; 4 (see Fig. 1), and 0 is a 3� 3 zero
matrix. The ri are given by

r1 ¼ r2 ¼ r4 ¼
1 0 0

0 0 �1

0 �1 0

0
BB@

1
CCA;

r3 ¼
0 1 0

1 0 0

0 0 1

0
BB@

1
CCA: (3)

The transformation of spin under the matrix U is used
to determine which pattern of magnetic orderings or mag-
netic field preserve the mirror symmetry about the (�101)
plane. Note reflection about this mirror plane takes a
unit cell located at lattice vector Ri ¼ ðxi; yi; ziÞ to
�Ri ¼ ðzi; yi; xiÞ. The k-space Hamiltonian transforms as
MHdðkx;ky;kzÞM�1¼Hdðkz;ky;kxÞ. On the mirror plane in

the Brillouin zone (see Fig. 1) where kx ¼ kz, ½Hd;M�¼0.
Therefore, on this plane the Bloch eigenstates ofHd can be
labeled by mirror eigenvalues �i since M2 ¼ �1 [7,12].

Mirror Chern number.—For 0< �=t < 2:8 the noninter-
acting model is metallic; larger values of � open a gap in
the spectrum and result in a Z2 TI with indicies (1;000)
[16]. This gap closes for �c � 3:25t by forming nodes at
the four equivalent L points in the Brillouin zone. These
nodes will again be gapped for � > �c, but inverted rela-
tive to � < �c. However, the Z2 index remains unchanged
because an even number of band inversions occurred.

We find the following parity invariants, �ð�aÞ in the nota-
tion ð�;�aÞ for �=t ¼ 3: ðþ1;�Þ; ð�1; LÞ; ð�1; XÞ for
�=t ¼ 5: ðþ1;�Þ; ðþ1; LÞ; ð�1; XÞ. The gap closing phe-
nomenon persists in the presence of interactions [16]. We
show these seemingly identical TI phases can be distin-
guished by a mirror Chern number. A similar gap closing at
the L points also occurs in Pb1�xSnxTe, separating a trivial
insulator from a TCI [12].
The fact that all bands on the mirror plane can be labeled

by mirror eigenvalue �i means that each band is effec-
tively spin polarized. We have calculated the average
values of the spin operator hSi for each band and found
for mirror related bands hSi/� Sffiffi

2
p ðx̂� ẑÞ, which is perpen-

dicular to the mirror plane. We also calculated the Berry
curvature �ðkÞ¼r�A, where A ¼ i

P
nhunðkÞjrjunðkÞi

is the Berry connection (summed over all occupied bands)
on the mirror plane in the Brillouin zone (see central panel
in Fig. 1). In Figs. 2(a) and 2(b) we plot ��iðkÞ for
occupied bands with mirror eigenvalues �i for � < �c

and � > �c. The path in k space is chosen along the mirror
Brillouin zone boundary including L1 ¼ ð�;�;�Þ and
L2 ¼ ð�;��;�Þ. The main contribution to �ðkÞ comes
from k points around L. The plots clearly reveal that
�þiðkÞ ���iðkÞ changes sign upon gap closing. For
each polarization we calculated the Chern number [7],
nM ¼ ðnþi � n�iÞ=2, and found that for � < �c: nþi ¼
þ1 and n�i ¼ �1 yielding nM ¼ þ1 and for � > �c:
nM ¼ �1. The nonzero value of mirror Chern number
shows that the mirror symmetry gives rise to nontrivial
band topology and it proves that the Z2 TI phases around
the gap closing point can be further labeled by nM ¼ �1.

FIG. 2 (color online). Berry curvature �ðkÞ along the bound-
ary of the mirror plane in Brillouin zone. L1 ¼ ð�;�;�Þ and
L2 ¼ ð�;��;�Þ are high symmetry points of the 3D Brillouin
zone residing on the boundary of the mirror plane in k space. In
(a)–(b) the time reversal symmetry is preserved and � < �c in (a)
and �>�c in (b). In (c)–(d) the time reversal symmetry is broken
by the magnetic ordering shown in Fig. 1 which preserves and
breaks the mirror symmetry in (c) and (d), respectively.

ab

c

FIG. 1 (color online). Left: Pyrochlore lattice. Transition metal
ions (large balls) are located on the corner shared tetrahedra,
each surrounded by an oxygen cage (smaller, red balls). Rare-
earth elements fill spaces between cages. Two mirror planes are
also shown. Center: Brillouin zone of face centered cubic lattice
with mirror plane. Capital letters denote the high symmetry
points. Right: a representation of unit cell with four sites and
two possible magnetic orderings. On top ordering preserve
mirror symmetry and on bottom ordering is of all-in-all-out
which breaks mirror symmetry.
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This behavior persists even in the presence of time
reversal breaking perturbations, which may result from
either a magnetic field or from local magnetic moments.
As an example, we add H0 ¼ P

iBi � Si to Eq. (1). In order
to understand which patterns of local moments or magnetic
field preserve the mirror symmetry, we note that under
reflection about the mirror plane: �x!��z, �y ! ��y,
�z ! ��x. Hence, H0 is invariant if Bi ¼ �Bð�1; 0; 1Þ,
or any magnetic ordering which is perpendicular to
mirror plane. Two configurations of magnetic orderings
are shown in Fig. 1. The ordering on the top has mirror
symmetry, while the all-in-all-out configuration breaks the
mirror symmetry. Such orderings can be stabilized by
interactions [19,21].

Consider a configuration of moments that preserve the
mirror symmetry. The mirror eigenvalues are still well defi-
ned and can be used to label the Bloch states. In Fig. 2(c)
we plot the corresponding Berry curvatures. Although
these values of Berry curvature look asymmetric between
states with mirror eigenvalues þi and �i, integrated over
the entire mirror Brillouin zone they are the same up to a
minus sign, namely, nþi ¼ �n�i yielding nM ¼ �1. This
shows that the band topology is constrained by mirror
symmetry, not by TRS. If the mirror symmetry is broken,
say by an all-in-all-out ordering, the Bloch states are no
longer eigenstates of the mirror operator. The correspond-
ing Berry curvature is shown in Fig. 2(d). Because of its
antisymmetric nature around each L point, the Berry phase
of each L point and thus the total Chern number is zero.
While the two magnetic orderings yield zero total Chern
number, the mirror symmetric one results in an integer
value of the mirror Chern number.

Surface states.—The bulk-boundary correspondence
implies the surface between two insulators with different
bulk band topology carries gapless surface modes [3,4]. In
order to confirm that the surface of the pyrochlore lattice
supports gapless surface states we consider a slab geometry
along the [010] direction. This slab, as shown in Fig. 1, is
symmetric about two mirror planes: (�101) and (101) with an
offset of 1=4 (or 3=4) of lattice spacing. We diagonalize the
Hamiltonian in this geometry and plot the surface states
along the high symmetry points of the projected Brillouin
zone. The results for different sets of parameters are shown in
Fig. 3. For a time reversal symmetric system there are Dirac
nodes right at the projected time reversal invariant momenta
(TRIM) �M and �X [see Figs. 3(a) and 3(b)]. By increasing
spin-orbit coupling across the gap closing point at �c the
overall features of the surface states remain unchanged
except that the area of Fermi surface enclosed byDirac nodes
at �M change and its electron or holelike character on the two
surfaces of the slab change. The degeneracy of the green
surface modes along �M �X can be lifted by applying different
onsite potentials on sites 1 and 3 (see unit cell in Fig. 1).

Now we break the time reversal symmetry by addingH0.
We first consider the cases in which the perturbation

respects the mirror symmetry. The results for uniform
magnetic field B1 ¼ Bð1; 0; 1Þ and B2 ¼ Bð�1; 0; 1Þ are
shown in Figs. 3(c) and 3(d), respectively. Note, B1 breaks
the symmetry about mirror plane (�101) but preserves the
mirror symmetry about plane (101), while B2 does the
opposite. The Kramers degeneracy is lifted and Dirac
nodes become gapped at the �M and �X point. However,
adjacent to �X there are still some crossing surface modes
[see inset in Fig. 3(c)]. Mirror planes in the Brillouin zone,
such as those shown in Fig. 1, define mirror lines in the
projected Brillouin zone. For example, for k points on the

line �� �X , where kx ¼ kz, the eigenstates can be labeled
by mirror eigenvalues. The same arguments hold for line
�M �X . Thus, surface states can also be labeled by their
corresponding mirror eigenvalues. The crossing of the
surface states along the �M �X line is protected by mirror
symmetry about (101) plane [see Fig. 3(c)], and the cross-

ing along �� �X line is protected by mirror symmetry about
(�101) plane [see Fig. 3(d)]. Away from these lines the

FIG. 3 (color online). The band structure of the tight-binding
model in Eq. (1) along the high symmetry points of projected
Brillouin zone as shown in inset of (a). In panels (a)–(b) the time
reversal symmetry is preserved and � ¼ 3 (a) � ¼ 4 (b). In
panels (c)–(e) the time reversal symmetry is broken, but the
mirror symmetry is preserved: (c) magnetic field B ¼ Bð1; 0; 1Þ,
inset enlarges the crossing (d) magnetic field B ¼ Bð�1; 0; 1Þ
and (e) magnetic ordering. In panel (f) both time reversal and
mirror symmetries are broken by a magnetic ordering of all-in-
all-out type. Green and red lines correspond to surface sates on
bottom and top surfaces, respectively, of slab. Dark blue lines are
bulk sates.
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degeneracy is lifted. We also calculated the surface states
in the presence of a pattern of magnetic ordering which
preserves symmetry about the mirror plane (�101). The
result is shown in Fig. 3(e). The surface modes cross

each other along �� �X line as expected. This identification
clearly shows that the crossing surface modes are associ-
ated with mirror symmetry, independent of the details of a
time reversal breaking perturbation.

Finally, we break symmetry with respect to both mirror
planes by considering an all-in-all-out magnetic configu-
ration. The band structure is shown in Fig. 3(f). It is seen
that the degeneracy is lifted and there is no crossing

along either �M �X or �� �X . We also explored many other
cases (not shown here). All mirror symmetry breaking
perturbations remove the band crossing in the gap. This
finding further verifies that the surface crossing discussed
in the previous paragraphs are associated with mirror
symmetry.

k � p Hamiltonian.—It is instructive to give a k � p
expansion of Eq. (1) near the L point. We first rotate
(kx, ky, kz) into a new orthogonal basis (k1, k2, k3) in which

k1 is along the �L line and k3 is perpendicular to mirror
plane. Thus, the mirror plane corresponds to k3 ¼ 0. Right
at the L point Eq. (1) in k space becomes block diagonal
with Bloch eigenstates localized on either site 1 (or sites
234) [see unit cell in Fig. 1]. This effectively subdivides the
lattice sites in two sets and defines a basis to expand Eq. (1)
around the L point. We label them as c A and c B, respec-
tively. With this identification the effective Hamiltonian
near the L point is,

H�i ¼ m�z � v1 � k�x þ v2 � k�y; (4)

where �z ¼ �1 corresponds to c A and c B, respectively,
and k ¼ ðk1; k2Þ. Eq. (4), and therefore its underlying
physics, is not dissimilar from the model introduced to
describe the insulator phases of the semiconductor
Pb1�xSnxTe upon doping [12]. In fact, in both models
the character of conduction or valence bands—d-orbital
c A=c B in our model and p-orbital cation or anion in the
Pb1�xSnxTemodel—gets switched at the L point by tuning
spin-orbit coupling � and Pb doping, respectively. The
band inversion changes the sign of the mass term m in
Eq. (4), which in turn changes the Chern number for �i
mirror eigenstates by �1. Since the gap closing occurs at
two equivalent L points (related by 180� rotation about
[101] axis) on the mirror plane, the total change of Chern
number for each �i states will be �2. This change of
Chern number is consistent with Berry curvatures calcu-
lated in Fig. 2. There is, however, a significant difference
between our model and the model for Pb1�xSnxTe. In the
latter model, the gap closing at L points signals a topo-
logical phase transition between a trivial insulator PbTe
and topological insulator SnTe with mirror Chern number
nM ¼ 2. But in our d-orbital model the topological phase
transition occurs between two topological phases with

different mirror Chern number: nM ¼ �1 before and
nM ¼ þ1 after a gap closing. This distinction between
topological insulator phases has some implications for
the surface states which can potentially be explored in

experiment. For example, on the mirror line �X �� �X there
is exactly one crossing surface mode due to nM ¼ þ1,
while for Pb1�xSnxTe there are two crossings.
Topological crystalline Mott insulator.—In d-orbital

models the electron correlations can be strong and
might even lead to new topological phases, such as the
topological Mott insulator (TMI) [16]. The TMI phase
can be obtained through a spin-charge separation inher-
ently included in the slave-rotor decomposition [22,23]:
cj� ¼ ei�jfj�. The mean-field theory can be written as

H ¼ Hf þH�, where Hf and H� describe, respectively,

spinon and rotor parts of the model, and are related to

each other via mean-field parametersQf ¼ he�ið�i��jÞi and
Q� ¼ hP��0T��0

ij fyi��fj�0�0 i which are determined self-

consistently as a function of Hubbard interaction [16,17].
The Hamiltonian of the electrons is described by Eq. (1)
with di� ! fi� and Tij ! QfTij. Thus, the electron corre-

lations systematically renormalize the band width of the
system by decreasing Qf. Mott physics occurs when the

quasiparticle weight Z ¼ hei�i vanishes for sufficiently
strong Hubbard interactions, where the bosonic rotor exci-
tations are gapped and become uncondensed. Beyond this
limit the low energy excitations are described solely by a
spinon Hamiltonian,Hf, which may have topological band

structure. We calculated the mirror Chern number in the
boson uncondensed phase and established that nM ¼ �1.
This already means that the previous topological crystal-
line insulator phase in the weak interaction limit will
transit into a Mott analogue—the topological crystalline
Mott insulator (TCMI)—which is similar in physics to a
topological Mott insulator phase inherited from the non-
trivial band topology of a noninteracting TI only with
gapless spin modes protected by the mirror symmetry
rather than TRS.
Summary.—We discussed the possible realization of

topological crystalline insulators in transition metal oxides
with 5d orbitals and mirror symmetry, and have shown
electron interaction effects can drive a novel TCMI phase.
One may wonder if the TCI phase will survive disorder in
real materials; the experimental examples [13–15] prove
that it does, much as the salient properties of the time-
reversal invariant Z2 TIs survive in the presence of the
Earth’s weak magnetic field. Indeed, theory supports the
robustness of the TCI phase if mirror symmetry is broken
locally [12].
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