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A hitherto unexplained feature of electromagnetic simulations of ion temperature gradient turbulence is

the apparent failure of the transport levels to saturate for certain parameters; this effect, termed here

nonzonal transition, has been referred to as the high-� runaway. The resulting large heat fluxes are shown

to be a consequence of reduced zonal flow activity, brought on by magnetic field perturbations shorting out

flux surfaces.
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While zonal flows in electrostatic plasma microturbu-
lence have been studied in detail [1–3], questions remain
regarding the influence of magnetic fluctuations. As will
be shown, under certain circumstances, such fluctuations
can have a severe impact on turbulent saturation. Multiple
gyrokinetic studies [4–7] demonstrate good agreement
between codes for cyclone base case (CBC) [8] parameters
(which constitute a standard benchmark scenario) at finite
normalized electron pressure �. Once � exceeds a value of
0.8%, however, heat fluxes do not appear to saturate any-
more and instead grow to very large values. This has been
termed runaway, but until now no encompassing explana-
tion existed, and many approaches were discussed only
informally. While the effect was mostly conjectured to
stem from numerical shortcomings, Ref. [9] first suggested
that it might be physical. Various codes—for standard
initial conditions; see a comment in Ref. [10]—agree on
the threshold [11] which shall be referred to as �NZT

crit , as

opposed to the kinetic ballooning mode (KBM) threshold
�KBM

crit (the point where KBMs become linearly unstable,

close to where they become the dominant instability [7]);
NZT stands for nonzonal transition, a process which will
be explored in some detail here. The NZT (KBM) thresh-
old is extracted from simulations through a nonlinear
(linear) � scan. An NZT has also been observed in pure
ion temperature gradient (ITG) turbulence [10], as opposed
to the CBC where trapped electron modes (TEMs) play a
role. It is to be stressed that if �NZT

crit >�KBM
crit , no effect is

observed, as simulations of KBM turbulence tend not to
remain stably saturated for long times.

A better understanding of this process is desirable since
� thresholds may limit the efficiency of fusion devices, but
also because an unexplained effect of this severity may call
into question the fundamentals of gyrokinetics. After a few
words on the computational setup, the runaway phase is
described, and the threshold is studied in more detail. It is
shown that the NZT is caused by field line decorrelation
which significantly enhances the level of flux-surface-
breaking magnetic fluctuations. The impact of perturbed

magnetic fields on zonal flows is studied through simula-
tions, completed by a physical explanation which involves
the impact of resonant magnetic fluctuations on zonal
flows, based on an analytical model.
All simulations were performed with the GENE code

[12,13] in its radially local version. Details on the CBC-
relevant (physical and numerical) parameters can be found
in Ref. [7]. The NZT proves to be very robust with respect
to numerical parameters and resolutions, which is why for
some simulations, a slightly reduced grid was used, with
(128, 16, 16, 32, 8) modes or points in the radial, binormal,
parallel, parallel velocity, and magnetic moment direc-
tions, respectively. These values have only a very moderate
impact on the transport levels, do not affect the physics
under investigation, and are very similar to the resolutions
used in Ref. [6].
Figure 1 shows fluxes during and after the runaway phase

at � ¼ 0:9%. After initial saturation at t� ð20–40ÞR0=cs
(the length of which is determined by the initial condition),
growth quickly sets in again, and fluxes rise in a vaguely
exponential manner (with growth not exceeding the maxi-
mum linear rate �ITG), causing the time step to fall and
making continuation of the simulation rather expensive.
At some point, however, simulations will saturate again

at very large transport—this second saturation regime is
of no consequence to experimental devices but makes
numerical analyses like determining nonlinear frequencies
or quasilinear ratios more convenient. Such analyses, both
during the growth period and the second saturated phase,
confirm that the runaway phenomenon is simply an ITG
mode growing without the zonal flow being able to bring
about its saturation: the nonlinear frequencies match the
linear ITG, the transport and amplitude spectra hardly
change qualitatively from those at lower �, but the zonal
flow now has very little impact, and streamerlike structures
dominate the perpendicular plane once the simulation has
saturated again, strongly resembling the picture found for
electron temperature gradient driven turbulence [12,14].
When using a larger perpendicular box up to four times as
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big on each side as the default choice, the flux levels during
the second saturation phase are lowered somewhat, but still
orders of magnitude higher than those at lower �.

For a variety of reasons, it is preferable to replace the
term runaway with nonzonal transition, and to refer to
�NZT

crit as the NZT threshold—this nomenclature will be

used throughout this Letter.
Known cases showing an NZT all exhibit background

gradients larger than typically observed in experiments.
The dependence of �NZT

crit on the background gradients

!n;T ¼ R0=Ln;T was thus assessed, where R0 is the major

radius and Ln;T denotes the gradient scale length of the

background temperature or density. Figure 2 shows that
�NZT

crit depends more strongly on those gradients than does

�KBM
crit , and that increasing gradients will lower the NZT

relative to the KBM threshold. Combined, these dependen-
cies resemble some features of the ITG (stronger drive
for higher !Ti and !n) as well as some of microtearing
(stronger drive for higher !Te and !n) [15].

The NZT appears in some sense to be nearly marginal
at standard CBC parameters (i.e., the NZT and the KBM
threshold are of a similar magnitude), showing sometimes
significant stretches of low-flux saturation before transi-
tioning to high fluxes.

This leads to the central question of what brings about
this change in the ITG-zonal-flow balance. No changes
in the linear physics are observed near �NZT

crit , such as the

occurrence of new (subdominant but unstable) modes,
phase or frequency shifts, or quasilinear flux ratios. A
secondary instability analysis—measuring the growth of
secondary modes destabilized through the nonlinear action
of the linear mode—was performed, again revealing no
significant changes of the nonlinear zonal flow drive
between � ¼ 0:7% and 0.9%. In Ref. [9], subcritical

excitation of KBMs as a tertiary instability (which in turn
is excited nonlinearly by the secondary mode) due to non-
linear profile corrugations of temperature and density fluc-
tuations was put forward as a possible cause. While the
analyses in that paper are interesting and important in their
own right, they do not apply here: the corrugation ampli-
tudes near �NZT

crit are far too small to destabilize KBMs

subcritically at this �; moreover, Ref. [9] ignores corruga-
tions of the electrostatic potential—GENE simulations show
that they can negate the effect of the pressure corrugations
via shear flow. All in all, no subcritical KBM destabilization
is possible for CBC parameters. In addition to this tertiary
instability analysis, the nonlinear excitation of stable linear
eigenmodes was studied for the present work. An investi-
gation of the �104 modes with the least negative growth
rate revealed practically no changes at �NZT

crit with respect

to the relative distribution of nonlinear amplitudes, even
taking into account the vastly different fluxes during the
second saturation regime. More details on the analyses
mentioned here, as well as on nonlinear energy transfer,
will be published in a separate paper. Regarding the latter,
one can compute the (k0x-averaged) nonlinear transfer N
from ky to k0y [16]: The result for k00y ¼ ky � k0y ¼ 0,

normalized to the sum over all interactions with k00y � 0,

constitutes a good measure for zonal flow coupling. Looking
at this quantity in the range of 0< ky � 0:35 (and kx ¼ 0),

one finds that N ðky; � ¼ 0:7%Þ< 0 (indicating that the

zonal flow facilitates transfer to higher kx, consistent with
the conventional zonal flow shearing paradigm), whereas
N ðky; � ¼ 0:9%Þ> 0 (indicating that the zonal flow does

not contribute to saturation), with hN ð� ¼ 0:9%Þiky �
0:3jhN ð� ¼ 0:7%Þikyj. In otherwords, zonal flow coupling

is fundamentally changed once �NZT
crit is exceeded.

This picture is confirmed by a closer look at the shearing
rate !s ¼ hk2x�fsi, where �fs is the flux-surface average

FIG. 2 (color online). Impact of gradient variations �! on
�NZT

crit (normalized to �KBM
crit ) for CBC and ITG case parameters.

Different symbols and colors indicate different gradients.
Vertical arrows signify that for a particular �!, the NZT
threshold lies above the ballooning threshold.

FIG. 1 (color online). Transport levels Q for � ¼ 0:9%: the
black solid, red dashed, and blue dotted lines correspond to the
ion and electron electrostatic fluxes, and the electron electro-
magnetic flux, respectively. Both plots show the same data, the
lower on a logarithmic axis, with black dotted lines of a slope
twice the maximum linear growth rate, which is not exceeded
by the Qs.
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of�. This quantity parameterizes the effect of zonal flows,
regardless of whether they regulate turbulence by energy
transfer to stable modes or by shearing. It increases from
�2 during transient saturation to around 3–4 afterwards;
however, the root-mean-square �rms increases by many
orders of magnitude during the same time span, meaning
the shearing rate—and thus the zonal flow—becomes less
and less important.

Recently, it has been shown that (radial) magnetic fluc-
tuations Bx are composed of a quasilinear odd-parity com-
ponent and an even-parity component, the latter of which
is brought about by a subdominant microtearing mode
[16,17]. Therefore, turbulent magnetic fields tend to con-
tain some resonant (even-parity) Bx components which are
able to break flux surfaces. As will be demonstrated, the
nonresonant (odd-parity) Bx fluctuations which are excited
as part of the linear ITG mode can also become flux-
surface-breaking under certain conditions—while usually
not considered as a cause for magnetic stochasticity, this
effect can play a crucial role when Bx is spatially incoher-
ent: Consider a field line subjected to an odd-parity Bx.
Following this field line poloidally from �� around the
torus, one finds it to be radially displaced by a distance
�r1=2 ¼ rð0Þ � rð��Þ from the unperturbed flux surface

after half a poloidal turn. The mean displacement over
the second half turn is then �r2=2 � ��r1=2CBxxð�r1=2Þ,
where it is sufficient here to approximate the radial corre-
lation function ofBx as being parabolic in�r=�Bxx at small
and vanishing at large separation, CBxxð�rÞ � max½1�
ð�r=�BxxÞ2; 0�, with the radial correlation length of Bx

denoted by �Bxx, which describes the radial displacement
where the auto-correlation function of Bx (taken at the
outboard midplane) has decreased to 0.368. Consequently,
the squared radial displacement after a full turn becomes

ð�r1=2 þ �r2=2Þ2 � 2�r21=2½1� CBxxð�rÞ�
� 2�r21=2 min½ð�r1=2=�BxxÞ2; 1�: (1)

When �r1=2 < �Bxx, the field line returns to its original

position, thereby preserving flux surfaces. As �r1=2 �
�Bxx, however, the field line decorrelates from Bx after its
first half turn, and �r2=2 will no longer cancel �r1=2. Note
that, in general, �r1=2 is determined by both the resonant

and the nonresonant components of Bx. Figure 3 shows that
for CBC parameters, the first (i.e., most displaced) field lines
reach the decorrelation condition �r1=2 � �Bxx very near

�NZT
crit . The sharp threshold for the NZT can be understood

by considering the behavior of the stochastic radial conduc-
tivity �x / Dm, where Dm � h�r1=2 þ�r2=2i2=ð2�q0R0Þ
is the magnetic diffusivity [18]. With �r1=2 / � and using

Eq. (1), it can be seen that�x / �4 for�<�NZT
crit in the case

of purely nonresonant Bx. Once the threshold is crossed, the
increase becomes less pronouncedwith a scaling of�x / �2.

An NZT has also been observed in the ITG case [10]
(where !Te ¼ 0. Moreover, note that a Poincaré section

based on an artificial, fully nonresonant Bx shows stochas-
ticity at sufficiently high fluctuation levels. The sensitivity
of the NZT threshold to !Ti can be explained by the
dependence of Bx on the total heat diffusivity [19], which
for ITG turbulence depends strongly on !Ti. To illustrate
the consequences of zonal flows being subjected to mag-
netic fluctuations, a study of their corresponding impact
is presented below.
Zonal flows are unstable to geodesic acoustic modes

(GAMs). After these have decayed away, the resulting
residual state is stable in the absence of collisions [1,2].
For such simulations, background gradients and magnetic
shear are turned off, and only one finite jkxj is included.
When adding a binormal By (self-consistently or as a

constant), the residual level remains unchanged; the same
goes for a nonresonant radial Bxðkx ¼ 0Þ, e.g., Bx / sinz,
where z is the parallel coordinate. Only when adding a
resonant Bx, e.g., Bx / z0, does the picture change—see
Fig. 4 (here, Bx is time-independent)—while the GAM
oscillations (not shown) do not feel its impact, the residual
level sees a quadratic decrease with time. Physically, the
electrons peel off their flux surface radially through paral-
lel motion along perturbed field lines, creating radial cur-
rents which weaken the zonal flow. Practically, collisions
or hyperdiffusion can be used to dampen the GAMs more
quickly and obtain a cleaner residual; alternatively, the
initial condition can be modified to result in a residual
with near-Maxwellian ions, yielding the same effect at
lower simulation cost.
The point t�¼0 depends only on the resonant component

of Bx, and can be parametrized (with q0 denoting the

safety factor and �t the inverse aspect ratio) via t�¼0 /
q0ð��1=6

t ÞB�1
x , independently of the zonal flow kx—

thorough tests were performed to ensure numerical con-
vergence. Note that while this study focuses on resonant
Bx, it is equally applicable to nonresonant but flux-surface-
breaking fluctuations in the context of the NZT.

FIG. 3 (color online). Half-turn radial field line displacement
�r1=2 and Bx correlation length �Bxx as a function of �; linear

fits indicate an intersection just above � ¼ 0:8%.
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Instead of a constant amplitude, Bx can be chosen to
scale with the spatially averaged j�j, thus creating a decay
resembling an exponential curve which depends on the
various physical parameters in a similar way as the above
study. This imitates the turbulent scenario more closely,
but does not include the destabilizing reaction of the
ITG turbulence to the diminished zonal flow. In summary,
these zonal flow studies illustrate the destructive impact of
a flux-surface-breaking Bx on the zonal flows, corroborat-
ing the above description of the NZT. Next, these findings
are compared to the results of an analytical model.

A constant-in-time, resonant Bxðkx ¼ 0Þ can be added to
the calculations presented in Refs. [1,2]. The full deriva-
tion has to be deferred to a separate publication—here,
only key assumptions and results will be shown. In such a
magnetic field, electrons will leave a flux surface through
parallel motion on a time scale depending on their indi-
vidual vk. At short times, the ions do not (yet) respond to

the electrons, and ambipolar effects are expected to be
small. With Bx entering solely through the source S�k , a
Laplace transform of � leads to

�ðtÞ ¼
Z t

0
�ðt0Þ�ðt� t0Þdt0; (2)

with

�ðtÞ ¼ �ðt ¼ 0Þ
R

� 2
R
dv?F0ðv?ÞS�k ðe�2t2 � 1Þ

ðn0e=TiÞk2?	2
sR

; (3)

where the frequencylike parameter � ¼ vkkxBx=B0 and

the residual factor R ¼ 1þ 1:6q20=�
1=2
t have been intro-

duced, as well as the adiabatic response �ðtÞ which
involves poles for residue integration. The other quantities
are the perpendicular velocity v? and the background

distribution F0. For short times t, the form of �ðtÞ will
determine the behavior of �ðtÞ, as �ðtÞ ! 
ðtÞ. As
expected, �ðtÞ includes the usual residual, but the second
term causes the potential to decrease quadratically in
time, as expð�2t2Þ � 1 � �2t2 for small t. In GENE nor-
malization, �2t2 � ðmi=meÞk2xt2B2

x=B
2
0, and thus the small-

argument expansion holds over a large range of t shown
in Fig. 4 (here, ky ¼ 0:05), consistent with the fact that the

dotted curve provides an excellent fit for t & 100cs=R0.
The central features of the simulations have thus been
recovered. The attention is now focused again on the
overall explanation of the NZT.
The following consistent picture emerges: the ITG mode

grows linearly and excites a zonal flow through which it
saturates. If �>�NZT

crit , sufficiently strong, nonresonant Bx

fluctuations created by the linear mode then decorrelate
field lines and cause the zonal flow to decay due to flux
surfaces shorting out (with or without the help of resonant
fluctuations), in turn allowing the ITG transport to
increase. Therefore, the ITG mode will continue to grow,
without the zonal flow being able to counteract it sufficiently
to saturate it, and the Bx amplitude will grow in tandem.
Once very large fluxes are reached, it can be conjectured
that the turbulence saturates via a Kelvin-Helmholtz-type
mechanism [12,20]; little physical meaning can be attached
to that phase, however. As a consequence of its zonal flow
dynamics, TEM turbulence is likely not prone to an NZT.
While for certain parameter regimes, zonal flows play some
role in TEM saturation [21], the mode should be able to
fall back on nonzonal saturation at similar or slightly larger
transport values if the zonal flows are critically weakened.
In conclusion, a physical explanation for the phenome-

non of the nonzonal transition has been provided, involving
the reduction of zonal flow strength by radial magnetic
fluctuations. Not only does this create a new � limit
which can be more restrictive than the KBM threshold
for sufficiently large pressure gradients—larger, however,
than those of typical present-day fusion experiments—but
it may also open new approaches to plasma control: an
external mechanism to suppress fluctuations would bolster
the zonal flows and thus reduce transport.
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