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The statistics of edge-localized plasma instabilities (ELMs) in toroidal magnetically confined fusion

plasmas are considered. From first principles, standard experimentally motivated assumptions are shown

to determine a specific probability distribution for the waiting times between ELMs: the Weibull

distribution. This is confirmed empirically by a statistically rigorous comparison with a large data set

from the Joint European Torus. The successful characterization of ELM waiting times enables future work

to progress in various ways. Here we present a quantitative classification of ELM types, complementary to

phenomenological approaches. It also informs us about the nature of ELM processes, such as whether they

are random or deterministic. The methods are extremely general and can be applied to numerous other

quasiperiodic intermittent phenomena.
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Edge-localized plasma instabilities (ELMs) [1–4] are
almost ubiquitous in high-performance magnetically con-
fined fusion plasmas. Their phenomenological properties
are correlated with the quality of global energy confine-
ment and the peak energy fluxes onto material surfaces
[3–6]. Two key challenges are to statistically characterize
these processes sufficiently well that a quantitative distinc-
tion between different observed classes of ELMs becomes
possible and to relate this classification to the physical
processes responsible for them. This will provide a test
for theoretical models and is an important step towards
improved estimates for the distribution of ELM waiting
times and sizes, both of which must be controlled
in reactor-scale magnetically confined fusion plasma
experiments.

ELMs offer a rich and diverse experimental phenome-
nology [1–8]. There is intense theoretical research on the
instabilities that may be responsible for triggering them [9],
but few unifying principles have been identified. We will
show that widely held experimentally motivated assump-
tions about the ELM process require particular statistical
characteristics. Specifically, if one assumes that the like-
lihood of ELM occurrence increases monotonically with
time elapsed since the most recent ELM, then the measured
distribution of waiting times between ELMs should belong
to a broad class of probability density functions (PDFs) of
which the Weibull distribution [10] is a special case. This
physical approach contrasts with a trial and error search for
a function that best fits the data [11]. The method is easily
generalized to other problems.

To test this conjecture requires the identification and
selection of a large representative data set, the development
and use of a reliable ELM detection algorithm, and a
method to find and compare the best possible fits between
data and any proposed PDF. This will provide a rigorous

basis for present and future studies. As an application of
our analysis, we distinguish between type I and type III
ELMs in a set of plasmas from the Joint European Torus
(JET) tokamak [12], on the basis of ELM waiting time
statistics alone. Whereas type III ELMs are usually smaller
than type I ELMs, typically they are more frequent and the
plasma’s energy confinement is lower. The ELM type is
presently determined by the ELM frequency’s response to
heating [2–4]. The physically motivated derivation for our
PDF allows a clear physical interpretation of our statistical
classification.
Theoretical background.—Consider the sequence and

distribution of time intervals (waiting times) between
ELMs. After an ELM, at t ¼ 0, we discuss the statistical
properties of the time of the next ELM in terms of two
linked functions. We define pðtÞdt to be the probability that
the next ELM is in the time interval (t, tþ dt), given that it
has not yet occurred at time t. This differs crucially from
the PDF of time intervals between ELMs, which we denote
by PðtÞ, and gives the fraction of inter-ELM time intervals
that are between t and (tþ dt) as PðtÞdt. Clearly, pðtÞdt is
a conditional probability, which multiplied by the proba-
bility that no ELM occurs between t ¼ 0 and t yields the
probability PðtÞdt of an inter-ELM time interval between t
and tþ dt. This gives the identity

PðtÞ ¼ pðtÞ
�
1�

Z t

0
PðyÞdy

�
; (1)

which allows pðtÞ to be expressed in terms of PðtÞ.
Alternately, Eq. (1) can be used to show that

PðtÞ ¼ � d

dt
exp

�
�
Z t

0
pðyÞdy

�
; (2)

giving PðtÞ as a function of pðtÞ, with R1
0 PðtÞdt ¼ 1. The

equivalence of Eqs. (1) and (2) can be confirmed by
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substituting Eq. (2) into Eq. (1) or by writing Eq. (1) as
pðtÞ ¼ �ðd=dtÞ ln½1� R

t
0 PðyÞdy� and substituting into

Eq. (2).
We adopt the experimentally motivated ansatz that for a

short time period tm immediately after an ELM, pðtÞ ¼ 0,
beyond which it starts to increase. The simplest dimen-
sionless representation of this hypothesis is

pðtÞdt ¼
8><
>:
0 t < tm

�
�
t�tm
t0

�
��1 dt

t0
t � tm;

(3)

where t0 sets the time scale. With the use of Eq. (2), this
gives

PðtÞdt ¼
8><
>:
0 t < tm

�
�
t�tm
t0

�
��1

exp
h
�
�
t�tm
t0

�
�
i
dt
t0

t � tm:
(4)

This is a Weibull distribution [10]. It is specified by two
dimensionless parameters � and � ¼ tm=t0, the time scale
being set by t0. From a theoretical perspective, the values
� ¼ 1 and � ¼ 2 deserve special mention. Beyond a
possible time delay tm, for � ¼ 1, pðtÞ is constant, corre-
sponding to a ‘‘memoryless’’ process in which events
occur with equal probability independent of time. The
transition between pðtÞ being a concave (decreasing de-
rivative) and convex (increasing derivative) function is at
� ¼ 2. As � increases, events appear increasingly regular.
The preceding derivation assumes that events are indepen-
dent and that the process causing them is stationary. This
approach generalizes easily to other physical problems
through an appropriate choice of pðtÞ.

Data sets.—Equation (4) will provide a good fit to a
measured sequence of waiting times when the hypothesis
represented by Eq. (3) holds. Such distributions have a
single maximum and require a macroscopic plasma equi-
librium with a quasistationary ELM process. PDFs with
additional maxima that are unlikely to have arisen from
noise were discarded, as were data whose ELM type was
uncertain. A search of carbon-wall JET data yielded a
selection of 69 type I and 15 type III ELM data sets. The
data sets each have a steady period of H mode with ELMs
lasting between 3 and 6 s and plasmas with an energy
confinement time typically between 0.25 and 0.4 s. The
data sets are listed in the Supplemental Material [13]. The
need for quasistationary ELM statistics is met by the pulse
length and quality of the JET plasmas studied, which is
much improved on the four data sets studied in Ref. [11].

ELM detection.—ELM detection algorithms typically
examine the radiation associated with ELMs, using a
threshold in amplitude to signal the start of an ELM and
a similar threshold or combination of thresholds to deter-
mine when an ELM has finished [11]. In those respects, our
detection algorithm is the same. The advance of the algo-
rithm described here is that the thresholds are determined
from the data in a precise and statistically invariant way so

that we do not need to reset thresholds for different sets of
data. This allows statistically robust comparisons between
different data sets and enables the technique to be used for
non-steady-state and real-time situations if desired. Our
algorithm examines the signal intensity of the Balmer-
alpha radiation from deuterium (D�) at JET’s inner diver-
tor and proceeds in two steps. First, a scan is made of the
data, obtaining for each time point the box average and
standard deviation of the signal intensity for a time interval
T immediately prior to that point. The average and stan-
dard deviation determine a Gaussian distribution that is
subsequently used to distinguish ELMs automatically. For
this study, the (D�) signal threshold for ELM detection was
for signal intensities that would only occur 1 time in 20,
based on the Gaussian distribution obtained from the data
preceding the measurement in question. Once the signal
has fallen below the average again, the ELM is considered
to have finished. We use a time interval T ¼ 0:41 s that is
much longer than the time between ELMs but is reasonably
short compared with changes to the plasma equilibrium.
For stationary pulses such as those here, with ELM waiting
times t � T, results are unchanged by increasing T to the
time duration of the entire data set. For cases such as these,
T is independent of the data. Because we are interested in
classifying ELMs by their statistical properties, here we
chose the same threshold for both the type I and III data.
The threshold of 1 in 20 was sufficiently sensitive for type
III data but kept noise tolerable in type I data. A systematic
exploration of these thresholds will be presented
elsewhere.
The method just described provides a nonsubjective

method to determine when the D� signal intensity indi-
cates an ELM. Because the study involves the detection
and study of many thousands of ELMs, ‘‘incorrect’’ detec-
tion or omission of one or more ELMs becomes part of the
experimental noise. The detection settings require only one
value to be set in advance of an analysis, and because it
does not need to be changed or optimized for any given set
of data, it is easy and quick to analyze very large data sets.
Also, because thresholds are set independently of the data,
it is possible to systematically mine noisy data by varying
the noise and time-scale parameters to search for patterns
in data that would otherwise be obscured.
Best fit and goodness of fit.—Both the Weibull and

Gaussian distributions have free parameters that must be
chosen to fit the data. A simple fit is provided by using the
moments of the data, e.g., average, standard deviation, and
skewness, to fit the parameters. More rigorously, we can
consider the likelihood function for the probability of the
data given the model being considered [14] (e.g., the
Weibull model W) and parameters ��, with

Lð ��Þ ¼ PðftigjW; ��Þ; (5)

where PðftigjW; ��Þ is the probability of observing the set of
waiting times ftig, given the assumption of a Weibull
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distribution (W), with fitting parameters ��. The free pa-
rameters that maximize Lð ��Þ are their maximum likelihood
(ML) estimate [14], for which the likelihood of the data
(given the distribution being considered) is a maximum. In
practice, the ML estimates are found by starting from the
moment-fitted estimates and iterating to find �� that max-
imizes Lð ��Þ. Given the best fits for two distributions PA

and PB, we can compare their goodness of fit by calculat-
ing their likelihood ratio [14]

�ðPA; PBÞ ¼ PðftigjPA; ��AÞ
PðftigjPB; ��BÞ

: (6)

Under the assumption of independent ftig, the likelihood
function and likelihood ratio can be expanded, for ex-
ample, with PðftigjPA; ��AÞ ¼ �n

i¼1PðtijPA; ��AÞ. Whether
PA or PB is a better fit to the data is determined by whether
� is greater or less than 1.

Equation (4) has one more free parameter than a
Gaussian. Thus, although Eq. (4) might provide a best fit
to the data, the model might not be better, because the fit
used an extra parameter. A Bayesian analysis would intro-
duce an extra factor [14] in Eq. (6) to account for this.
However, its influence will reduce as the number of ELM
time intervals increases. Unless the factor is of order 1=�,
it will not affect the decision for which is the best fit. For
the classification of data, the most important issue is that
the PDF (not the model) is a good fit. From that perspec-
tive, the issue is not relevant. Equation (6) rigorously
indicates which PDF is the best fit, and for the large
number of ELMs in our analyses, Eq. (6) is sufficient to
determine whether the model is significantly better or
worse than a Gaussian.

An absolute measure of goodness of fit is provided by
dividing the ELM waiting time axis into intervals, calcu-
lating the fraction Pi of observed ELMs in each interval i,
and calculating the coefficient of variation cW ¼ hðPi �
PWðtiÞÞ2i=hPWðtiÞi2 between the observed (Pi) and the
theoretical [PWðtiÞ] values at the midpoint ti of the interval.
This gives a normalized measure of the difference between
the observed and theoretical PDFs and provides an abso-
lute measure for goodness of fit. It has the disadvantage of
being dependent upon the number of data points used to
generate the Pi. Small numbers of points will make cW
susceptible to noise, increasing its value. The choice of
time intervals will also affect cW and consequently affect a
fit that minimizes cW . With enough data, this would no
longer be the case, but in practice it prevents cW from
determining a unique best fit. For these reasons, we use a
maximum likelihood best fit, which is unique. Similarly, if
cW is used to determine which PDF gives the best fit, the
decision is in practice influenced by the choice of time
intervals.

ELM classification.—A full listing of the data sets
studied, the time intervals over which they were analyzed,
and the results from their analysis are presented in the

Supplemental Material [13]. For a data set with n ELMs,
we substitute Eq. (4) for PA and a Gaussian for PB in

Eq. (6), then calculate the geometric mean �1=n, which

will be of order 1. If �1=n is greater (less) than 1.0, then �
will be much larger (smaller) for n � 1, indicating
whether the Weibull fit is a better (worse) fit than a

Gaussian fit. For the type I data sets h�1=ni ¼ 1:01�
0:04, where the error of �0:04 is the standard deviation
and n� 100. Using time intervals of 2:5� 10�3 s, the
coefficient of variation between the fitted and observed
PDFs is hcWi ¼ 0:63� 0:22 for the Weibull best fits and
hcGi ¼ 0:63� 0:20 for the Gaussian best fits. For the type

III data sets, h�1=ni ¼ 1:51� 0:15, with n� 300 or larger,
hcWi ¼ 0:70� 0:23, and hcGi ¼ 1:25� 0:24. Typical
examples are shown in Figs. 1 and 2. Whereas the fits are
similarly good for type I ELMs, the Weibull distribution is
the clear best fit for type III ELMs. Substantially improved
fits are likely if outliers are removed by improved
data, improved ELM detection techniques, or with some

FIG. 1 (color online). Weibull (red dashed line) and experi-
mental PDFs (black bar chart), for JET plasma No. 57861 (type I
ELMs).

FIG. 2 (color online). Weibull (red dashed line) and experi-
mental PDFs (black bar chart), for JET plasma No. 74417 (type
III ELMs).
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algorithm. The values of cW and cG can be reduced if the
best fit minimizes them instead of �.

Figure 3 plots � and � for the type I and III ELM data
sets. There is a clear clustering of type III data for � ¼ 1
and �< 0:5. As noted earlier, � ¼ 1 has special signifi-
cance because beyond an initial time delay tm, it corre-
sponds to a ‘‘memoryless’’ process in which the probability
of an ELM is independent of time. The type I data have a
wide spread in� and�, but notably� remains of order 2 or
larger. As � increases, ELMs will appear increasingly
regular. Therefore the type I ELMs studied here are con-
sistent with a process whereby the probability of an ELM
increases with time since the previous ELM, possibly due
to the buildup of some physical quantity with time. The
similarly good agreement between the Gaussian and
Weibull fits allows the alternative interpretation that type
I ELMs have a specific frequency that is broadened by
noise and that the good fit to type III ELM data is coinci-
dental. This is possible, although our original hypothesis is
consistent with present ELMmodels and explains the good
fit to both the type I and III data. To avoid disagreement
about the classification of ELM types, our data set excludes
ELMs whose type is uncertain. Therefore, there could be a
continuum between classifications, not observed here. The
scatter in� and� is larger for type I ELMs, possibly due to
smaller ELM numbers in those data sets. If noise is not the
cause, then further classification may be possible.

As an example, we analyzed JET plasmas 66105–66109,
whose ELM frequency is typical of type III ELMs [2–4,6],
but whose D� signal is visually similar to that of type I
ELMs. On the basis of Fig. 3, they are not type III ELMs.

Conclusions.—We have shown how simple experimen-
tally motivated assumptions require a Weibull PDF for
inter-ELM waiting times. The model applies to stationary
processes. A search of JET data yielded 84 sufficiently
long and steady plasmas to test the model, details of which
are in the Supplemental Material [13]. A statistically

rigorous ELM detection technique was developed to com-
pare the data sets from experiments many years apart. The
method uses a single dimensionless threshold that is set
independently of the data, and a single time period, allow-
ing rapid objective comparisons between different data
sets. The data set was analyzed, and a maximum likelihood
best fit was calculated, finding a good Weibull fit to both
type I and type III data. Therefore we explored whether
the dimensionless fitting coefficients � and � could be
used to classify the data, concluding that they can. The
classification has a clear interpretation: type III ELMs are
consistent with a memoryless process, but type I ELMs are
consistent with the buildup of a quantity with time, leading
to instability. In contrast, present ELM classification
requires either a subjective judgment or experimental
time to determine how ELM frequency responds to
heating [2–4].
To summarize, we have shown that a rigorous statistical

analysis of ELM waiting times is possible, and that it can
provide a quantitative classification of ELM types and
physical insight into the processes responsible for them.
The methods have numerous potential future applications,
especially for the longer plasma pulses planned for ITER
[15]. These include data mining, use in real time and for
other signals, and a quantitative characterization of the
response of ELM sequences to external parameters.
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