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Electron response in an intense laser is studied in the regime where the electron temperature is

relativistic. Equations for laser envelope and plasma density evolution, both in the electron plasma wave

and ion acoustic wave regimes, are rederived from the relativistic fluid equations to include relativistic

plasma temperature effect. These equations are used to study short-pulse and long-pulse laser hosing

instabilities using a variational method approach. The analysis shows that relativistic electron tempera-

tures reduce the hosing growth rates and shift the fastest-growing modes to longer wavelengths. These

results resolve a long-standing discrepancy between previous nonrelativistic theory and simulations or

experiments on hosing.
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Previous studies in intense short-pulse laser-plasma
interactions discovered many interesting phenomena rooted
in relativistic electron oscillation velocities, including rela-
tivistic self-focusing [1,2], ponderomotive plasma blowout
[2,3], and mutual interactions between laser beams in a
plasma [4,5]. Analyses of these phenomena assumed elec-
trons’ thermal energy small compared to their oscillation
energy and adopted a cold plasma approach. Recently
available kJ class short-pulse lasers have not only the
intensity to make electrons oscillate at relativistic speeds
but also, the energy to heat these electrons to relativistic
temperatures. In recent particle-in-cell (PIC) simulations of
kJ class laser channeling in mm scale underdense plasmas
for fast ignition, the residual electron temperature Te in the
channel was found to be multi-MeV [6,7]. Relativistic Te

was also observed in PIC simulations with sub-ps intense
pulses of energy as low as 10 J [3]. Relativistic Te can
reduce the electron oscillation velocity and decouple the
laser from the plasma [3,6,7]. However, how relativistic Te

affects a wide range of plasma optical phenomena in intense
laser-plasma interactions remains largely unexplored.

In this Letter, we will show that relativistic Te can sig-
nificantly affect laser hosing [8–12], an instability impor-
tant to both laser wake field accelerators (LWFA) [13] and
fast ignition [14]. Hosing affects laser propagation and
wake field generation in LWFA. LWFA-relevant hosing is
in the short-pulse regime, mediated by electron plasma
waves [8–11]. In the channeling or hole-boring scheme of
fast ignition, the channeling pulse can also suffer hosing
instability, causing channel bending and bifurcation [6,7].
Hosing in this long-pulse regime involves ion motion and is
mediated by the ion acoustic waves [12]. However, there is
a long-standing discrepancy on the wavelengths of the
dominant hosing modes between the existing theory and
PIC simulations or experiments. In the short-pulse regime,

the hosing modes observed in the PIC simulations [10] had
wavelengths 2–10 times longer than that predicted by the
cold plasma theory [8,9] for the fastest-growing mode. The
predicted fastest-growing mode at the plasma wavelength
was never observed in the simulations. The lack of such
modes was attributed to the interference of Raman insta-
bilities and the suppression of the plasma wave due to
plasma heating [10] but no quantitative theory was given.
In one reported experimental observation of laser hosing
[15], the observed hosing wavelengths were also much
longer than predicted by the short-pulse theory. The dis-
crepancy was speculated due to ion motion. As will be
shown in this Letter, long-pulse hosing theory including
the ion motion but assuming a nonrelativistic Te still pre-
dicts a fastest-growing mode at a much shorter wavelength
than observed. Similar discrepancy also exists between the
theory and the channeling simulations [6,7]. In addition,
some hosinglike structures observed in laser-plasma experi-
ments, also with wavelengths longer than what predicted by
the existing theory, were attributed to surface waves [16] or
asymmetry laser transverse profile [17].
The discrepancies between the predicted and observed

hosing wavelengths can be resolved by properly treating the
electron temperature effects in the relativistic regime. From
the full relativistic fluid theory, we will rederive the coupled
equations of laser envelope and plasma density in the
relativistic Te regime. Analyses of these equations using a
variational method show that as Te becomes relativistic, the
dominant hosing modes shift to longer wavelengths for
both short- and long-pulse modes, agreeing with the experi-
ments and PIC simulations. The derived equations also lay
the basis for studying other nonlinear plasma optical phe-
nomena in the relativistic Te regime [18,19].
From the relativistic Vlasov equation, a fully relativistic

fluid theory had been developed [20,21]. Here, we restrict
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ourselves to a locally isotropic particle distribution f.
The resultant pressure tensor �ij ¼ m

R
fðUi � hUiiÞ�

ðUj � hUjiÞ=�d3U is diagonal with �11¼�22¼�33�p.
Here, Ui ði ¼ 1; 2; 3Þ are the components of the momen-

tum (per unit mass) vector U, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U � U=c2p

, c the
speed of light, m the particle mass, and hUi is the fluid
momentum, hUii ¼ ðR fUi=�d3UÞ=ðR f=�d3UÞ.

For the locally isotropic f, the relativistic fluid momen-
tum equation {Eq. (85) in Ref. [21]} can be written as

mn

�
@

@t
þ v � r

�
½��v� ¼ nF�rp; (1)

where v is the fluid velocity, � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v � v=c2p

is the
relativistic factor from the fluid velocity, n ¼ R

fd3U is
the particle density, and F ¼ qðEþ v�B=cÞ is the
Lorentz force per particle. The thermal parameter � rep-
resents relativistic mass increase from the random motion
of the particles and is defined as � ¼ ðpþ �eÞ=ð �nmc2Þ,
where �e ¼ mc2

R
��fd3 �U is the internal energy density in

the local rest frame (which moves relative to the lab frame
with v) and �n ¼ n=� is the particle density in the local rest
frame. Different but equivalent forms of Eq. (1) have also
been derived based on the invariance of the momentum-
energy tensor [3,22,23]. Equation (1) shows that the total
relativistic factor of a fluid element is ��.

For a cold species, p ¼ 0, �e ¼ �nmc2, and � ¼ 1. As the
particles become hotter, � increases, but significant devia-
tion from one occurs only when the particles are relativisti-
cally hot. In Fig. 1, �’s from two common distributions
are plotted. One is from a nonrelativistic Maxwellian dis-

tribution fM ¼ �nð2�U2
thÞ�3=2 expð�U2=2U2

thÞ and the

other is from a relativistic Maxwell-Juttner distribution

fMJ ¼ �n½4�cU2
thKð2; c2=U2

thÞ��1 expð�c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ U2

p
=U2

thÞ,
whereK is the modified Bessel function of the second kind.
For same Uth, fMJ gives a much larger � than fM when
Uth=c > 1. For the Maxwell-Juttner distribution, when

Uth=c ¼ 1, the thermal energy �e� �nmc2 ¼ 1:2 MeV and
� ¼ 4:4 for electrons. For ions, � ¼ 1 is a good approxi-
mation for sub-GeV thermal energies.
As an initial study on laser propagation in a relativisti-

cally hot plasma, we focus on the simple case of a uniform
and constant �. The high frequency electron quiver veloc-
ity in the laser field can be found from Eq. (1) [3], vos=c �
a=ð��Þ, where a ¼ eA=mec

2 is the normalized laser vec-
tor potential. For weakly nonlinear cases with jaj< 1 or
relativistically hot electrons with jaj> 1 but jaj=� < 1,
the time-averaged fluid � can be approximated as � � 1þ
a2=ð4�2Þ, where a is the envelope of a. Under these
approximations, the widely used laser envelope equation
[24] becomes

�
c2r2

? þ 2ikLc
@

@�
þ 2

@2

@c @�

�
a

¼ !2
p0

�
1þ �n� jaj2

4�2

�
a

�
; (2)

in terms of the ‘‘speed of light variables’’ � ¼ x=c
and c ¼ t� x=c. Here, kL is the laser wave number,
�n ¼ n=n0 � 1 is the normalized electron density change

and !p0 ¼ ð4�n0e2=meÞ1=2 is the plasma frequency.

In the short-pulse regime, the equation for �n [24]
becomes [25],

�
�

@2

@c 2
þ!2

p0 �
�pTe

me

r2

�
�n ¼ c2

�
r2 jaj2

4
: (3)

Here, Te � meU
2
th is the electron temperature and the

adiabatic constant �p ¼ 5=3 is the same as in the

nonrelativistic case. In the long-pulse regime, �n follows
the ion density perturbation described by the ion acoustic
equation [12], which becomes [25]

�
@2

@c 2
� C2

sr2

�
�n ¼ Zme

mi

c2

�
r2 jaj2

4
; (4)

where Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZTe þ TiÞ=mi

p
is the ion sound speed.

Setting � ¼ 1, Eqs. (2)–(4) recover the usual nonrelativ-
istic equations that were widely used in the study of non-
linear plasma optics [12,24]. With �, they are for the first
time extended to the regime of relativistic Te.
We now show how the dominant hosing modes change

as � increases. We use a variational method [12,26,27]
to derive dispersion relations of hosing instabilities from
the relevant equations. For the � ¼ 1 case, Duda et al.
demonstrated the feasibility of the variational approach
for short-pulse hosing, including the dispersive term
[the mixed derivative term in Eq. (2)] [27] and long-pulse
hosing without the dispersive term [12]. We have extended
the analysis to �> 1.
We start with the long-pulse hosing. Typical hosing

wave numbers in this regime are expected to be
k�!pi=c, where !pi is the ion plasma frequency

FIG. 1 (color online). A plot of the thermal parameter � vs

Uth=c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=mc2

p
for two different distributions: Maxwellian

(M) and Maxwell-Juttner (MJ).
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!pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ne2=mi

p
. For typical laser and plasma parame-

ters in, for example, laser channeling in fast ignition
[6,7], longitudinal variation is much smaller than trans-
verse variations and r2 can be approximated by r2

? in

Eqs. (2) and (4). Also, the dispersive term in Eq. (2) can be
neglected, which has been confirmed by analysis including
this term [25]. To find a Lagrangian density L for which
the Euler-Lagrangian equations when varying the action
S ¼ R

dydzdc d�L are Eqs. (2) and (4), we introduce a

new potential � [12], r2
?� ¼ 1þ �n. The envelope and

density equations written in � and a are now

�
r2

? þ 2ik̂L
@

@�̂
� 1

�
r2

?�þ jaj2
4�3

�
a ¼ 0; (5)

r2
?

��
@2

@ĉ 2
� c2sr2

?

�
�� Zme

mi

jaj2
4�

�
¼ 0; (6)

where the quantities with a caret are space and time scales
normalized to c=!p0 or 1=!p0 and cs is Cs normalized to

c. The Lagrangian density then is

L ¼ Zme

mi

�
r?ar?a� þ ik̂Lða@�̂a� � a�@�̂aÞ

� 1

�
r?jaj2r?�� jaj4

8�3

�
� 2ðr?@ĉ�Þ2

þ 2c2sðr2
?�Þ2; (7)

which recovers Eqs. (5) and (6) if varying with respect to a,
a�, and�. Gaussian trial functions are chosen for a and �,

a ¼ a0e
i�eiky~yaeikz~zae�½1�i�y�~y2a=w2

yae�½1�i�z�~z2a=w2
za ; (8)

� ¼ �e�2½~y2
�
=w2

y�
þ~z2

�
=w2

z�
�: (9)

Here, ~ya ¼ y� yaðĉ ; �̂Þ and ~y� ¼ y� y�ðĉ ; �̂Þ, where ya
and y� are the centroids of a and �, respectively; a0e

i� is

the complex amplitude of a and � is the amplitude of �;
wya and wy� are the spot sizes of a and �, respectively; ky
and �y are the wave number and wave front curvature of a,

respectively. The quantities ~za, ~z�, wza, wz�, kz, and �z are

similarly defined. All these parameters are functions of ĉ
and �̂. Substituting the trial functions into Eq. (7) and
performing the integration over y and z yield a reduced
Lagrangian density, for which the Euler-Lagrangian equa-
tions are a set of equations for the trial function parameters.
A matched beam equilibrium solution (@�̂ ¼ 0), where the
laser spot sizes remain constant and the centroids remain
straight (ya ¼ y� ¼ 0 and za ¼ z� ¼ 0), can be found.

Perturbing this equilibrium yields the hosing equation
(the derivations are similar to those in Ref. [27])

@2�̂ya1 þ�1ya1 ¼ �1y�1; (10)

@2
ĉ
y�1 þ�2y�1 ¼ �2ya1; (11)

where

�1 ¼ 27

256

Zme

mi

P0

�2c2s k̂
2
Lŵ

4
0

; �2 ¼ 4
c2s
ŵ2

0

: (12)

Here, P0 ¼ a20ŵ
2
0 is the dimensionless laser power and ŵ0

the normalized spot size. The centroid equations of za1 and
z�1 are similar to Eqs. (10) and (11), with y changed to z.

The motions of the centroids in y and z are not coupled.

Assuming ðya1; y�1Þ � eiðk̂ x̂�!̂ t̂Þ, a dispersion relation is
obtained from Eqs. (10) and (11)

!̂4 � 2k̂!̂3 þ ðk̂2 ��1 ��2Þ!̂2 þ 2�2k̂ !̂��2k̂
2 ¼ 0:

(13)

Here, k̂ is real and !̂ is complex, and hosing growth rates
are the imaginary part of !̂.

Figure 2(a) plots growth rates vs k̂ from Eq. (12) for a

case of a0 ¼ 0:53, ŵ0 ¼ 9, k̂L ¼ 10, cs ¼ 0:02. For a laser
of 1 �m wavelength in a deuterium-tritium plasma
(Zme=mi ¼ 1=4590), they correspond to a laser intensity
of 0:4� 1018 W=cm2 and a plasma with n ¼ 1019 cm�3

and Te ¼ 1 MeV, which gives � ¼ 8:17 (for fMJ).
Comparing with the � ¼ 1 case, a relativistic Te signifi-
cantly reduces hosing growth rates and also shifts the
fastest-growing mode to a longer wavelength. Figure 2(b)

plots the wave number k̂M and growth rate �̂M of the
fastest-growing mode as a function of Te, with� calculated

from fMJ. It shows that k̂M first decreases steeply and then
increases slowly as Te increases. And �̂M first increases,
due to the increase of the plasma pressure, and then
decreases, due to the relativistic effects. Analysis of

Eq. (13) shows that the growth rate peaks when k̂2 � �1 þ
�2. For nonrelativistic Te, cs is very small and �1 	 �2

[see Eq. (12)]. In this limit, k̂M and �̂M are k̂ðlcÞM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið27=256ÞðZme=miÞ
p

a0=ð�csk̂Lŵ0Þ, �̂ðlcÞ
M ¼ ð0:75=ŵ0Þ�

ðZme=miÞ1=6½csa0=ð�k̂LÞ�1=3. Eventually, the increase of

FIG. 2 (color online). Plots of typical growth rates vs mode
numbers [long pulses (a) and short pulses (c)] and the growth
rates and mode numbers of the dominant modes vs temperatures
[long pulses (b) and short pulses (d)].
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� saturates �̂ðlcÞ
M . For a relativistically hot plasma, cs and �

increase so that �1 
 �2. In this limit, k̂M and �̂M are

k̂ðlhÞM � ffiffiffiffiffiffiffi
�2

p ¼ 2
cs
ŵ0

; (14)

�̂ðlhÞ
M ¼

ffiffiffi
3

p
2

�
�1

2

�
1=3

�1=6
2 ¼ 0:41

ŵ0

�
Zme

mi

�
1=3

�
a20

cs�
2k̂2L

�
1=3

:

(15)

These asymptotic expressions fit well with the numerical
solution in Fig. 2(b).

For short-pulse hosing, the density equation Eq. (3) has a
new electron pressure term ð�pTe=meÞr2�n compared to

the previous work [27]. Analysis [25] shows that the r2
?

part of this term gives only a small correction for the usual
case of ŵ0 > 1. The r2

jj part poses a difficulty for the

variational analysis. Here, we study the regime of � 	
�pTe=mec

2, which is fully met in a cold or warm plasma

and is approximately met in a relativistically hot plasma, to
focus on the effects of �> 1. In addition, the dispersive
term in Eq. (2) mainly reduces the growth rates of the small
k modes and does not affect the k of the dominant mode
[25]. Here, we present the nondispersive case. Introducing
a new potential � ¼ jaj2=4�2 � �n leads to a Lagrangian

density of L¼ð1=�Þ½r?ar?a�þik̂Lða@�̂a��a�@�̂aÞ�
�jaj2=�þjaj2=���2�ð@ĉ�Þ2þ2�2. With Gaussian trial

functions in Eqs. (8) and (9) and, a variational analysis
leads to a set of equations that are identical to Eqs. (10) and

(11) with �1;2 replaced by �ðspÞ
1 ¼ P0=ð8�3k̂2Lŵ

4
0Þ and

�ðspÞ
2 ¼ 1=�. The dispersion relation has the same form

as Eq. (13). Typical �̂-k̂ curves, as shown in Fig. 2(c) for a

case in Ref. [10] with a0 ¼ 2, ŵ0 ¼ 15, k̂L ¼ 8:5, show the
existence of long wavelength modes [27] but also the shift
of the dominant mode to longer wavelengths. In general,

�ðspÞ
1 =�ðspÞ

2 ¼ a20=ð8�2k̂2Lŵ
2
0Þ 
 1, except for extremely

high laser intensities or small spot sizes. Therefore, similar
to Eqs. (14) and (15),

k̂ðspÞM � 1ffiffiffiffi
�

p ; (16)

�̂ðspÞ
M ¼ 0:34

�7=6

�
a0

k̂Lŵ0

�
2=3

: (17)

The � dependence clearly show that k̂ðspÞM and �̂ðspÞ
M

decrease as Te increases. The analytical results of
Eqs. (15) and (16) agree well with the full numerical
solution of Eq. (13) [Fig. 2(d)]. When Te ¼ 1 MeV, the
dominant hosing wavelength increases to approximately
three times of the plasma wavelength.

In one experimental observation of laser hosing by
Najmudin et al. [15], all observed hosing instability fell
in a long wavelength region, with no hosing structures of
wavelengths shorter than 200 �m observed. Figure 3(a)

shows that for the experimental parameters a0 ¼ 2:68,
w0 ¼ 8:7 �m, ne ¼ 2:3� 1019=cm3, and Zme=mi ¼
1=3672, the maximum growth from the long-pulse hosing
theory occurs at 	h ¼ 30 �m for Te ¼ 1 keV. The theory
predicts that the maximum growth occurs at 	h ¼ 287 �m
and 1044 �m for Te ¼ 100 keV and 1 MeV, respectively.
This clearly indicates the importance of plasma heating.
Recent 3D PIC simulations of laser channeling observed
hosing simultaneously in the two transverse directions [7].
In one simulation, a laser with an initial a0 ¼ 2:68 and
w0 ¼ 90=kL propagated in a deuterium-tritium plasma
with an exponentially rising density profile of n0 ¼ 0:1�
0:3nc. The channeling process was dynamic, including
laser self-focusing and significant plasma density modifi-
cation. The electrons were heated from an initial Te ¼
1 keV to a final Te � 6:5 MeV. The hosing growth rates
of the dominant mode in the simulation are measured and
plotted together with the long-pulse theoretical curves in
Fig. 3(b). The theoretical curves are calculated for two
Te’s, 100 keV and 1 MeV, with constant parameters of
n0 ¼ 0:2nc, a0 ¼ 5:36, w0 ¼ 45=kL, accounting for laser
self-focusing. Given the differences between the simula-
tion and the theory, the agreement is reasonable. The
biggest limitation of Eqs. (2)–(4) is the static � used, in
contrast to the dynamic heating processes in the experi-
ments and simulations. To better predict experiments or
simulations requires a theory for the laser heating process
(how � changes with time), which requires future research.
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