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In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in

density between the solid and the liquid. If such a suspension is subjected to vibration, there is relative

motion between the particles and the fluid which can lead to self-organization and pattern formation.

Here, we describe experiments carried out to investigate the behavior of two identical spheres suspended

magnetically in a fluid, mimicking weightless conditions. Under vibration, the spheres mutually attract

and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other.

The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical

value of the streaming Reynolds number. Simulations reproduce the observed behavior qualitatively and

quantitatively, and are used to identify the features of the flow that are responsible for this instability.
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In the absence of gravity any collection of particles can
form a suspension in a liquid, regardless of their density.
If the densities are different and the suspension is vibrated,
the particles and the fluid will move relative to each other.
The resulting hydrodynamic flows in the liquid can strongly
influence the behavior of the suspended particles. Here, we
show how diamagnetic levitation can be used to study such
a suspension, reproducing the effect of weightless condi-
tions in an orbiting spacecraft. We study the behavior of
two spheres suspended in a liquid that is vibrated to induce
hydrodynamic flows around the spheres.

Hydrodynamic interactions between particles are a known
mechanism for inducing dynamic self-assembly [1].
Ordinarily, such experiments are limited to two-dimensional
ordering due to the presence of gravity, either with the
particles on a surface [2–6], confined to the interface between
two immiscible liquids [7,8], or suspended in the liquid via a
rod [9–12]. In a zero-gravity environment, such as on the
International Space Station, three-dimensional suspensions
of particles have been used in crystal growth [13,14]. It is
found that stray vibrations (g jitter) [15] generate undesirable
hydrodynamic flows around the growing crystallites, which
are known to reduce the quality of the resulting crystals [16].

A strong magnetic field with a large vertical field
gradient can be used to suspend particles in a liquid,
even if the density of the particles is much greater than
that of the liquid [17]. Such an arrangement allows us to
investigate nonlinear hydrodynamic effects in a fully three-
dimensional fluid-particle system.

In this Letter, we report experiments and simulations
carried out to investigate a novel hydrodynamic instability
exhibited by two identical spheres suspended magnetically
and vibrated freely in a liquid. Under vertical vibration
the spheres are attracted to each other and align so that the
line joining their centers lies perpendicular to the axis of
vibration [2–5]. As the amplitude of vibration is increased
beyond a critical value, the spheres orbit each other in the

horizontal plane, with no preferred sense of rotation. We
have investigated the conditions for the onset of this insta-
bility in terms of the viscosity of the liquid, the amplitude
and frequency of the oscillation, and the size and density
of the spheres. We have also carried out simulations
which reproduce the behavior observed experimentally
both qualitatively and quantitatively. The experiments
and simulations reveal the existence of two jets emerging
from the point of contact of the two spheres. Above a
critical amplitude of vibration, the angle of the jets changes
giving rise to a net torque on the spheres.
Our experiments were carried out using a 17 T super-

conducting magnet (Oxford Instruments), details of which
are given in Ref. [18]. Conditions for suspension are given
in the Supplemental Material [19], see also Ref. [17]. Pairs
of equal-sized, highly spherical glass ball lenses (CVI
Melles Griot) of diameters d ¼ 1, 2, or 3 mm were placed
inside a transparent cylindrical cell of internal diameter
34 mm and height 110 mm, containing a paramagnetic
solution of MnCl2. Varying amounts of glycerol were
added to adjust the fluid’s viscosity. The cell was inserted
into the vertical bore of the magnet, and connected by a
drive rod to a loudspeaker mounted beneath the magnet
[18] (Supplemental Material, Fig. S1 [19]). The spheres
‘‘levitate’’ in stable mechanical equilibrium at a local
minimum in the magneto-gravitational potential energy
[20–22]. Wemeasured the dimensionless peak acceleration
� ¼ A!2=g (where ! ¼ 2�f is the angular frequency
of vibration) using an accelerometer mounted on the
loudspeaker, from which we determined the amplitude of
vibration, A. Typically � was less than 7, the frequency f
was in the range 12–35 Hz, and the amplitude was less than
5 mm. The cell was positioned so that the stable levitation
point was located near the cell’s center.
Experiments were also carried out using a pair of

bismuth spheres which could be suspended in a water-
glycerol mixture. In some of these experiments, finely
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crushed bismuth was added to the fluid. In the magnetic
field, the bismuth powder levitated in the same region as
the pair of bismuth spheres. Under vibration, the powder
formed a halo around the spheres which, owing to the high
reflectivity of the metal grains, could be used to image the
flow of the liquid in the vicinity of the spheres [19].

Under vertical vibration, the spheres move relative to the
fluid owing to the difference between the inertial mass of
the particles and the fluid they displace, but do not sedi-
ment owing to the equality of their effective gravitational
masses: the gravitational force on the spheres is balanced
by a buoyancy force that is enhanced by a magnetic force
on the fluid. The spheres attract each other due to the pres-
ence of streaming flows [23,24] that form when the cell
is vibrated; these flows align the spheres horizontally with
the line joining their centers perpendicular to the direction
of vibration [2,3].

We first describe the behavior of the glass spheres in a
MnCl2 solution as we increased the amplitude A for a
fixed !. For low values of A the spheres moved vertically
in response to the fluid motion, but there was no motion of
the spheres in the horizontal plane. Above a critical value
of A, which we label A�, the spheres orbited each other at a
constant angular speed in the horizontal plane.

Although A is the quantity we measured experimentally,
the relevant amplitude characterising the behavior is that of
the oscillatory motion of the spheres relative to the liquid
far from the spheres, Ar. In general the relative motion of
the spheres differs in amplitude and phase from the motion
of the cell [25]. We determined Ar of the pair of spheres as
a function of the driving amplitude A, angular frequency!,
and kinematic viscosity � in an independent set of
experiments.

To quantify the instability, we measured the relative
amplitude of vibration at the onset of the orbital motion
A�
r for a range of particle sizes, fluid viscosities, and

vibration frequencies. For Ar > A�
r , the particles orbited

each other. As Ar was increased above A�
r , the particles

orbited at a faster rate and sometimes separated for higher
relative amplitudes. We obtained A�

r by first increasing Ar

until rotation was observed. We then decreased Ar slowly,
measuring the rate of rotation � for each value of Ar.
Example data are shown in the inset to Fig. 1. For small
�=! there is an approximate linear dependence on Ar=�.
The onset amplitude A�

r is determined by extrapolating the
linear portion of the data to zero rotation rate � ¼ 0.

If the transition is purely hydrodynamic (rather than a
magnetohydrodynamic effect [19] or induced by unwanted
vibrations of the apparatus), the onset can only depend
on three independent length scales: A�

r , d, and the viscous

penetration depth � ¼ ð�=!Þ1=2. Here, we assume that the
cell is sufficiently large as to have no influence on the
instability; in all our experiments the ratio of the diameter
of the cell to the diameter of the particle is greater than 10.
In Fig. 1, we plot the ratio A�

r=d as a function of �=d for the

parameters given in the figure caption. It can be seen that
there is a good collapse of the data onto a single curve
within experimental error which confirms our assumptions
that the transition is purely hydrodynamic and that the cell
is sufficiently large. The part of the curve for �=d < 0:13
(corresponding to a particle Reynolds number Rep ¼
Ard=�

2 * 50) lies close to a straight line through the
origin, shown in Fig. 1. This line corresponds to a value
of the streaming Reynolds number Res ¼ A2

r=�
2 ’ 52,

which is independent of the particle size [23].
For low values of Ar=d and �=d there is no consistent

rotational instability. The lower limit of �=d for which we
observe rotation corresponds to an upper limit on the
particle Reynolds number Rep ’ 100 as indicated by the

lower arrow in Fig. 1. For higher values of Rep the parti-

cle’s motion becomes unsteady and no periodic orbital
motion is observed. We speculate that this behavior might
be due to vortex shedding as has been observed in simula-
tion for a single sphere [26].
For �=d greater than about 0.13 (Rep & 50) a gap opens

up between the particles before the spheres start to orbit
[3]. The data for which there is a gap appears to collapse
onto the hook-shaped part of the curve. However, if the
spheres are stuck together with glue, the onset of orbital
motion falls on to the straight line through the origin, as
shown in Fig. 1. Our data are bounded for larger values of
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FIG. 1 (color online). The main panel shows the collapse of
the onset data in terms of the dimensionless variables A�

r=d and
�=d. The kinematic viscosity is in the range 1:13–2:43 mm2 s�1

for 1 mm glass spheres; 2:76–8:37 mm2 s�1, 2 mm glass;
7:14–14:9 mm2 s�1, 3 mm glass; and 6:46–15:6 mm2 s�1,
2.8 mm bismuth shot. The inset shows the dependence of the
scaled orbital angular velocity �=! on the scaled relative
amplitude Ar=� for representative data sets. The points at
�=! ¼ 0 are extrapolations; onsets determined from these
points are shown by filled symbols on the main panel.
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�=d by the limits of our experimental setup: the vibratory
waveform becomes significantly nonsinusoidal below
about 11 Hz.

The inset to Fig. 1 shows the orbital angular velocity �
as a function of the relative amplitude Ar for representative
sets of data. Rotation rates are symmetric for the clockwise
and anticlockwise directions. Markers on the spheres show
that during the motion the spheres appear to slide around
each other, with the markers maintaining their orientation
with respect to the cell. As Ar increases, the orbital angular
velocity � increases. Eventually the particles separate at
high rotation rates and the orbital motion can become
unstable. In general, the rotation data cannot be collapsed
in terms of Ar=d and �=d because the introduction of
an orbital time scale gives rise to an extra length scale

l ¼ ð�=�Þ1=2. However, the extrapolated value of Ar=� to
zero rotation rate should all be the same, which they are
within experimental error arising from uncertainties in the
measurement of the viscosity.

Further experiments were carried out using bismuth shot
to ascertain the effect of changing the particle density.
Using bismuth has the added benefit that we can use
crushed bismuth as tracer particles to help visualize the
streaming flow. An example of the flow pattern is shown in
Fig. 2. In this long-exposure image, the streaklines traced
out by the bismuth powder appear as white trails. The
streakline photograph is focused to show the horizontal
flow in the plane through the centers of the two spheres.
The bismuth shot behaved in the same way as the glass
spheres, giving a similar data collapse for the onset of
orbital motion, as shown in Fig. 1. When orbiting, the

two bismuth shot particles move as a single solid object
instead of sliding past each other as the glass spheres do.
We attribute this behavior to the roughness of the bismuth
surface. However, this difference in motion is irrelevant as
far as the onset of orbital motion is concerned.
We were unable to obtain good images of the full three-

dimensional flow because of the confined space in the
bore of the magnet. In order to more fully understand the
streaming flows and the cause of the instability we carried
out simulations based on a molecular-dynamics treatment
of the particles coupled to a numerical solution of the
continuum Navier-Stokes equations for the fluid. Details
of the simulation method and its validation can be found in
Refs. [3,5,27] and in the Supplemental Material [19].
Some data from the simulation showing the rotation

rates and extrapolated onset amplitude are shown in the
inset and main panel of Fig. 1. The simulated streaming
flows under conditions for which there is no orbital motion,
i.e., Ar < A�

r , are shown as black lines superimposed onto
the photograph in Fig. 2. The simulation parameters were
similar to those in the experiments. To reduce numerical
noise, we simulated vibration of the particles with the
appropriate Ar in a static fluid. It can be seen from
Figs. 1 and 2 that the simulated rotation rates, onset am-
plitude A�

r and flows are in good quantitative agreement
with those found experimentally. The difference between
the simulated flow and experimentally observed flow at
large distances (* 5d) is due to finite size effects in the
simulation.
In both experiment and simulation we observe that, in

the plane of the two spheres, there are two strong outward-
flowing jets emerging from the region between the two
spheres and an inward flow elsewhere, as illustrated by the
arrows in Fig. 2. This behavior is completely different from

FIG. 2 (color online). An image of the spheres taken from
above when the fluid is vibrated but there is no orbital motion.
Color is used to enhance contrast. The vibration is applied along
the direction perpendicular to the plane of this image. The red
and green streak lines indicate the steady streaming flow in the
plane of the spheres. There is a strong outward flow from the
contact point of the spheres and an inward flow elsewhere, as
illustrated by the white arrows. The superimposed black lines
show the corresponding streak lines obtained from simulation.

FIG. 3 (color online). A representation, obtained from simu-
lation, of the time-averaged vortex structure around the two
spheres vibrated under conditions for which they are not rotat-
ing. The closed loops represent the curl of the velocity field and
are schematic vortex lines as described in the text. The direction
of the arrows indicates the sense of rotation, i.e., the direction of
the curl of the velocity field. The double-headed arrow indicates
the direction of vibration.
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that of a single sphere under equivalent conditions, where
the equatorial flow is radially inward towards the sphere
everywhere [24,26].

Using the simulations, we investigated the structure of
the full three-dimensional flow around the two spheres.
The local flow is best visualized from the vorticity of the
time-averaged velocity of the fluid. Figure 3 shows four
pairs of loops; the arrows on the loops indicate the direc-
tion of the circulation (local curl of the velocity field) from
which the fluid flow can be obtained by the right-hand
screw rule. The four pairs of loops represent all the basic
features of the flow pattern around the spheres, but do not
indicate its magnitude. The upper and lower loops (pink)
on the diagram show that, above and below the spheres, the
flow is predominantly away from the spheres (i.e., up and
down), as is the case for a single sphere or two spheres
vibrated on rigid rods [11]. The left and right outer loops
(green) represent inward flow towards the spheres; for a
single sphere this flow would also be present, but in that
case the equatorial flow is inward everywhere. The two,
small inner loops (blue) represent the strong horizontal
outward flow from between the spheres, something
which is not present for a single sphere. The inner loops
immediately above and below the spheres (red) feed this
outward flow.

As the amplitude is increased, the vortices associated
with the jets become larger, and the mirror symmetry of the
equatorial flow pattern, evident in Figs. 2 and 3, is broken.
Now the direction of the jet is no longer perpendicular
to the line through the center of the two spheres, as shown
in Fig. 4. It is this broken symmetry that gives rise to a
net torque on the two spheres causing the orbital motion.

The steady rotation rates that we observe, shown in the
inset to Fig. 1, are governed by the balance between this
torque and the viscous drag in the fluid.
Our findings show the usefulness of magnetic levitation

to investigate a fundamental problem in hydrodynamics.
This technique has allowed us to explore the full three-
dimensional flow around vibrated particulates without the
complications of boundary effects. We anticipate that our
work will open up new ways for manipulating and ordering
granular suspensions in a noninvasive way.
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