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We propose an algorithm for the detection of recurrence domains of complex dynamical systems from

time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited

in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that

could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar

applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size

of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic

recurrence plot revealing functional components of the signal.
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States of complex dynamical systems often dwell for
relatively long time in a particular domain of their phase
spaces before the trajectory moves into another region.
This is the case for metastability [1] and several kinds of
instability, such as saddles that are connected by hetero-
clinic trajectories [2,3] or, e.g., the ‘‘wings’’ of the Lorenz
attractor that are centered around its unstable foci [4].
According to Poincaré’s famous recurrence theorem [5],
we could refer to such behavioral regimes as recurrence
domains of a dynamical system. The detection of recur-
rence domains has become increasingly important in recent
time in several applications such as spin glasses [1] and
molecular configurations [6], as well as in the geosciences
[7] and in the neurosciences [2,8–10].

For the identification of recurrence domains from time
series, their characteristic slow time scales have been
separated from the fast dynamics of phase space trajecto-
ries by several clustering algorithms [1,2,6,8,11,12]. One
method, sometimes called Perron clustering [6], starts with
an ad hoc partitioning of the system’s phase space that
leads to an approximate Markov chain description
[1,6,8,11,12]. Applying spectral clustering methods to the
resulting transition matrix yields the time scales of the
process, while their corresponding (left) eigenvectors
allow the unification of cells into a partition of metastable
states [8,12]. Another approach by Hutt and Riedel [2]
utilizes the slowing-down of the system’s trajectory within
saddle sets by means of phase space clustering.

Several of such methods are numerically rather time-
consuming. For instance, Markov chain modeling requires
an ad hoc partitioning of the complete system’s phase
space into equally populated cells, from which transition
probabilities must be estimated by counting measures.
Subsequent spectral clustering methods perform various
matrix multiplications and clustering techniques. All these
algorithms are numerically rather expensive, as illustrated
in Ref. [8].

In this Letter, we propose a parsimonious algorithm for
detecting recurrence domains from measured or simulated
time series. Our starting point is Eckmann et al.’s [13]
recurrence plot (RP) method for visualizing Poincaré’s
recurrences. The proposed method is numerically less
time-consuming and advantageous especially for high-
dimensional data since it simply exploits the recurrence
structure of the system’s dynamics.
When xj 2 Rd is the system’s state at (discretized) time

j in phase space Rd of dimension d, the element

Rij ¼ �ð"� jjxj � xijjÞ (1)

of the recurrence matrix R ¼ ðRijÞ is 1 if xj is contained in
a ‘‘ball’’ B"ðxiÞ of radius " > 0 centered at state xi 2 Rd

and 0 otherwise [13,14], as mediated by the Heaviside step
function �. Eckmann et al. [13] have already pointed out
that RPs display recurrence domains as a characteristic
‘‘checkerboard texture.’’ We illustrate this in Fig. 1 with
the paradigmatic Lorenz attractor [4].
The upper panel of Fig. 1(a) displays the x1, x2 (blue and

green, bottom) and x3 (red, top) time series of the Lorenz
attractor starting with initial condition x ¼ ½20; 5;�5�T ,
with integration interval ½0; 20� and sampling �t ¼
0:0095. The two wings of the attractor [shown in Fig. 1(e)]
clearly correspond to positive, respectively, negative x1, x2.
The recurrence plot in Fig. 1(b) exhibits the typical texture of
diagonal line patterns that are characteristic for oscillatory
dynamics. These oscillators correspond to the attractor’s
wings. Going along the line of identity reveals transient
transitions between about four recurrence domains, while
the checkerboard texture of these diagonal line patterns
indicates that there are indeed only two recurrence domains
being involved, namely, the wings, that are repeatedly
explored by the system’s trajectory.
For uniform ", the recurrence matrices obtained from

Eq. (1) are reflexive, Rii ¼ 1 (the line of identity), and
symmetric, Rij ¼ Rji, but in general not transitive;
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i.e., Rij ¼ 1 and Rjk ¼ 1 do not necessarily imply Rik ¼ 1.

In order to cope with this disadvantage, Donner et al. and
later Faure and Lesne [15,16] suggested to compute the
recurrence matrix from words in a symbolic dynamics [17]
through

Rþ
ij ¼ �wiwj

; (2)

where wi, wj are words of length m at times i and j in a

symbolic sequence s ¼ a1a2 . . . an. Here, �ab ¼ 1 if
a ¼ b and 0 otherwise denotes the Kronecker matrix.
Symbolic RPs given by Eq. (2) are also transitive, because
symbolic dynamics results from a partition of the system’s

phase space into equivalence classes from an equivalence
relation.
In contrast to Refs. [15,16], here we construct a phase

space partition and thereby its resulting symbolic dynamics
from the "-RP (1). For that aim we first observe that
Rij ¼ 1 if two "-balls B"ðxiÞ and B"ðxjÞ intersect: B"ðxiÞ \
B"ðxjÞ � ;. We could therefore start with an initial parti-

tion of the phase space into a family of "-balls around the
sampling points xi and its set complement and then merge
all intersecting balls together. The result is a partition of
phase space into disjoint sets.
In order to achieve this construction we consider the

"-RP R [Eq. (1)] as a grammatical rewriting system over
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FIG. 1 (color online). Recurrence-based symbolic dynamics of the Lorenz attractor [4]. (a) Time series xt (upper panel) and optimal
encoding s0 (color bar beneath). (b) "-recurrence plot [Eq. (1)] for " ¼ 5:0 and Euclidian norm; black pixels denote Rij ¼ 1, white

ones Rij ¼ 0. (c) Symbolic dynamics s0 for range " 2 ½0:2; 3�. (d) Dependence of entropy ratio [Eq. (5)] from ". (e) Phase space

partition into recurrence domains for optimal encoding "� ¼ 1:9. (f) Symbolic recurrence plot [Eq. (2)] of optimal encoding.
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the time indices of a given trajectory xt [18]. Thus, we first
map a trajectory xt to the sequence of successive time
indices, regarded as symbols: xt ! st ¼ t. Then we define
a formal grammar of rewriting rules: if i > j and Rij ¼ 1,

create a rule i ! j. To enforce transitivity for i > j > k,
Rij ¼ 1 and Rik ¼ 1, we first eliminate the redundancy

by rewriting only i ! k and then create an additional
rule j ! k. Finally, we apply this grammar to the initial
sequence of time indices st ¼ t in order to replace large
indices by smaller ones, thus exploiting the recurrence
structure of the data. The result is a transformed symbolic
sequence s0t, whose symbolic RP Rþ [Eq. (2)] [15,16]
becomes also transitive.

Let us illustrate the procedure by means of a simple
example. Assume we have a series of only five data points
ðx1; x2; . . . ; x5Þ that gave rise to the recurrence matrix

R ¼

1 0 0 1 0

0 1 0 1 1

0 0 1 0 0

1 1 0 1 0

0 1 0 0 1

2
666666664

3
777777775
: (3)

The algorithm starts in the fifth row, detecting a recurrence
R52 ¼ 1. Since 5> 2, we create a rewriting rule 5 ! 2.
Because the next recurrence in row 5 is trivial, the algo-
rithm continues with row 4, where R41 ¼ R42 ¼ 1. Now,
two rules 4 ! 1 and 4 ! 2 could be generated. However,
the latter is redundant. Therefore, the algorithm only
records the rule 4 ! 1. Moreover, transitivity is taken
into account by an additional rule 2 ! 1. Next, row 3
does not contribute to the algorithm and rows 2 and 1
can be neglected due to the symmetry. Recursively apply-
ing this grammar to the symbolically encoded time series
s ¼ hh12345ii yields s0 ¼ hh11311ii, i.e., a system with
two recurrence domains hh1ii and hh3ii.

In order to validate our construction, we employ the
method to the Lorenz attractor as shown in Fig. 1(c).
Here, each row is the symbolically encoded time series s0
from Fig. 1(a) using a color code. For small values of " (top
rows) there are almost no intersecting "-balls such that
each ball is represented by a separate color from the light
spectrum. Increasing " towards the bottom rows yields
more and more intersections, eventually leading to one
big cluster of merged "-balls for " > 2:6. For intermediate
values of ", essentially two recurrence domains emerge
that are connected by transients.

Interestingly, Fig. 1(c) also reveals that our recurrence-
based symbolic dynamics is rather robust against variations
of the ball size " which is reflected by the vertical band
structure of the symbolic sequences.

Guided by the principle of maximal entropy, we assume
that the system spends equal portions of time in its recur-
rence domains and we derive a utility function of the sym-
bolic encoding from the entropy of the symbol distribution

Hð"Þ ¼ � XMð"Þ

k

pk logpk; (4)

where pk is the relative frequency of symbol k andMð"Þ the
cardinality of the symbolic repertoire obtained for ball
size ". The entropy ratio

hð"Þ ¼ Hð"Þ
Mð"Þ (5)

is then a good estimator for a given encoding because small
values of " lead to an almost uniform distribution of rare
symbols that is punished by the large alphabet. In contrast,
large values of " give rise to a trivial partition with small
entropy. Thus, the quantity hð"Þ will assume a global maxi-
mum for an optimal value,

"� ¼ argmax
"

hð"Þ; (6)

reflecting a uniform distribution of a small number of recur-
rence domains.
We plot the dependence of hð"Þ for the Lorenz system in

Fig. 1(d) and choose the optimal ball size "� ¼ 1:9 for the
symbolic dynamics in the color bar of Fig. 1(a). One can
easily recognize that one wing is uniquely represented
by the turquoise (gray) symbol, while the other one is
represented by orange and light green (lighter and darker
gray) symbols. The distribution of these symbols in phase
space is shown in Fig. 1(e) using the same color palette for
the samples xt. Here, one wing is completely captured by
the union of turquoise (gray) "-balls, while the other one
needs two partition cells, indicated in orange and light
green (lighter and darker gray) which is due to a gap in
the second wing in our numerics.
Finally, Fig. 1(f) depicts the symbolic RP Eq. (2) where

the characteristic checkerboard texture of the Lorenz
attractor’s recurrence domains is significantly enhanced.
In order to also present a proof of concept for our

method applied to real-world data, we reanalyze event-
related electroencephalographic (EEG) data from a lan-
guage processing experiment [19] in Fig. 2 since Hutt and
Riedel [2] have argued that components in the event-
related brain potential (ERP) can be regarded as saddle
sets and therefore as recurrence domains in the EEG.
Figure 2(a) displays the averaged ERP time series of a

single subject encountering a linguistic processing problem
in German [19]. In Fig. 2(b) we present the conventional RP
[Eq. (1)] for " ¼ 8:0 �V. Figure 2(c) shows the utility
function hð"Þ from Eq. (5). The optimal encoding s0 is
obtained for "� ¼ 3:5 �V, which is depicted as the color
bar in Fig. 2(a). The symbolic dynamics exhibits three
interesting properties: (i) the prestimulus interval is repre-
sented by one distinguished recurrence domain, (ii) the time
interval for lexical access around 400 ms post stimulus is
represented by another recurrence domain, (iii) the time
windowof syntactic reanalysis around 600ms is represented
by the first recurrence domain again. This results from the
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optimization constraint to obtain uniformly distributed
recurrence domains. Also, the symbolic RP in Fig. 2(d)
nicely reveals the existence of two substantial recurrence
domains.

In this Letter we proposed a parsimonious algorithm for
the detection of recurrence domains in complex dynamical
systems. In contrast to techniques based on Markov chains,
which require an ad hoc partitioning of the system’s phase
space and the estimation of transition probabilities, our
approach exploits the recurrence structure of the system’s
dynamics thereby partitioning the phase space into unions
of intersecting "-balls along the actual trajectory.

The proposed method could have a number of
interesting applications in many different fields, such as
molecular dynamics [6], geoscience [7], and neuroscience
[3,8–10] for the identification of recurrence domains.
Moreover, it could also be useful for the analysis of com-
plex networks for solving graph partition and related prob-
lems by taking the transitive closure of the graph’s
adjacency matrix. Finally, we concede that further research

is required to obtain appropriate utility functions for real-
world problems that violate the uniformity assumption for
recurrence domains in order to detect, e.g., saddle sets in
heteroclinic dynamics [3,10] or to identify functional ERP
components [2].
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FIG. 2 (color online). Recurrence-based symbolic dynamics of
a 17-dimensional ERP data set of a single subject [19]. (a) Single
subject ERP time series (upper panel) and symbolic encoding s0
with "� ¼ 3:5 �V (color bar beneath) for d ¼ 17 scalp chan-
nels. (b) " recurrence plot [Eq. (1)] for " ¼ 8:0 �V. (c) Utility
function hð"Þ [Eq. (5)]. (d) Symbolic recurrence plot [Eq. (2)] for
optimal encoding "� ¼ 3:5 �V.
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