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The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an

intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies

also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in

the classically forbidden region features two time scales, the typical time that characterizes the probability

density’s decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the

electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time). In the relativistic regime, an

electron momentum shift as well as a spatial shift along the laser propagation direction

arise during the under-the-barrier motion which are caused by the laser magnetic field induced Lorentz

force. The momentum shift is proportional to the Keldysh time, while the wave-packet’s spatial drift is

proportional to the Eisenbud-Wigner-Smith time. The signature of the momentum shift is shown to be

present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast,

the signature of the Eisenbud-Wigner-Smith time delay disappears at far distances for pure quasistatic

tunneling dynamics.
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Introduction.—With present-day strong lasers providing
intensities of the order of 1022 W=cm2 [1] and employing
highly charged ions, the relativistic regime of strong field
atomic processes, in particular, strong field ionization of
highly charged ions [2], is accessible [3]. Relativistic gen-
eralizations of the strong field approximation (SFA) [4–7]
and the quasiclassical theory of ionization [8,9] provide
simple ways to calculate ionization probabilities in the
relativistic regime [10,11].

The ionization occurs in the so-called tunneling regime
when the laser’s electric field amplitude E0 is smaller than
those required for over-the-barrier ionization [12] and the

Keldysh parameter � ¼ !
ffiffiffiffiffiffiffi
2Ip

p
=E0 [13] is well below

unity with the ionization potential Ip and the laser’s angu-

lar frequency !. The Keldysh parameter defines the time
scale �K ¼ �=! during which individual momentum com-
ponents of the ionized wave packet are formed [5]. When
this time scale is shorter than the laser period, i.e., � � 1,
the laser field can be treated as quasistatic.

In the nonrelativistic as well as in the relativistic case,
the electron travels during its journey from the bound state
into the continuum through a region which is forbidden
according to classical mechanics. For nonrelativistic dy-
namics, when the typical electron velocities are negligible
compared to the speed of light, it is legitimate to treat the
laser field as a homogeneous time-dependent electric field
EðtÞ and to neglect its magnetic component. In this case a
well-known intuitive picture for the tunneling regime
arises in which the electron tunnels out through the effec-
tive potential Veffðr; tÞ ¼ VðrÞ þ r �EðtÞ formed by the
atomic potential VðrÞ and the laser field. The Keldysh
time �K may be interpreted as the time that a classical
free electron would need to cover the length l� Ip=E0 of

the tunneling barrier at the characteristic velocity of a

bound electron �a ¼ ffiffiffiffiffiffiffi
2Ip

p
. The contribution of the laser’s

magnetic field component becomes non-negligible when
we enter the relativistic regime. A transverse laser field
with perpendicular electric and magnetic components can-
not be described solely by a scalar potential. Consequently,
a generalization of the tunneling picture into the relativistic
regime is not straightforward [14] and there is no clear
intuitive picture for the relativistic quasistatic ionization
dynamics in the classically forbidden region.
Later, we will identify the so-called tunneling time �E as

a second time scale that is fundamental for the electron
dynamics in the classically forbidden region. The tunnel-
ing time through a potential barrier (Eisenbud-Wigner-
Smith time delay [15]) has been a long-standing problem
in quantummechanics [16–18]. Interest in this problem has
been renewed recently by experimental attempts to mea-
sure the temporal delay at the electron emergence into the
continuum from a bound state during the laser-induced
(nonrelativistic) tunneling [19]. A vanishing tunneling
time within the experimental error has been observed in
these experiments.
In order to develop an intuitive picture for the relativistic

tunneling regime of strong field ionization, we carry out a
detailed analysis of the electron dynamics through the
classically forbidden region in the relativistic regime and
compare it with the corresponding nonrelativistic case.
The characteristic time scales are examined. Our analysis
is based on the SFA [4–7] as well as on the exact solution of
the relativistic wave equations and numerical simulations.
The possibility for the experimental detection of the
specific relativistic features of the classically forbidden
dynamics is also elaborated.
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System.—A highly charged hydrogenlike ion with
nuclear charge Z & 100 at the origin of our coordinate
system is considered to interact with a strong linearly
polarized laser field with electric field of amplitude E0 in
x, magnetic field of amplitude B0 in y and propagation in z
direction (E0 ¼ B0). Position and momenta of electrons
that are ionized by the laser pulse may be measured by a
detector far away from the interaction zone. Throughout
this Letter we describe the laser field via its vector potential
in electric field gauge [20,21], i.e., �ðr; tÞ ¼ �r �Eð�Þ
and Aðr; tÞ ¼ �k̂½r �Eð�Þ�=c with the laser phase � ¼
t� z=c, the electron’s coordinate r ¼ ðx; y; zÞ, the unit

vector in laser propagation direction k̂, and the speed of
light c. The dynamics of the electron state j�i in the rest
frame of the ionic core is then defined via the Dirac
equation

i@tj�i¼ fc� � ½p̂þAðr; tÞ�þVðrÞ��ðr;tÞþ�c2gj�i; (1)
with the momentum operator p̂ and the Dirac matrices �
and �. In the following, we use an extreme but feasible set
of parameters, viz. Ip=c

2 ¼ 0:25 and E0=Ea ¼ 1=30, with

Ea ¼ Z3 denoting the characteristic atomic field strength,
representing a hydrogenlike ion with nuclear charge of
Z � 90 in the tunneling regime [12].

Relativistic strong field approximation.—The SFA
allows us to calculate the ionized part of the asymptotic
electron wave packet at a detector in the remote future. As
we are interested in the under-the-barrier dynamics of
the electron, the momentum distribution at the tunnel exit
time t0 is deduced analytically from the distribution at the
detector, assuming free propagation in the laser field
outside the barrier. The asymptotic ionization amplitude
in momentum space reads [22]

hpf; sfj�i ¼
Z 1

�1
hc pf;sf jr �Eð�Þj ~c 0id�; (2)

where pf ¼ ðpf;x; pf;y; pf;zÞ and sf denote the electron’s

final momentum and spin, respectively, jc p;si is the Volkov
state [23] with momentum p and spin s, while j ~c 0i is the
dressed Dirac bound state spinor of a short range potential
with binding energy �Ip [22]. The relativistic wave func-

tion jc 0i is used in the relativistic as well as in the non-
relativistic calculation allowing us to trace back the features
in the under-the-barrier dynamics to the Hamiltonian’s
different corrections to the electric dipole approximation.
Calculating the integral (2) via the saddle point method,
the momentum distributions at the detector, see Fig. 1(a),
and at the tunnel exit are derived; see Fig. 1(b). While
parabolic wings of size pf;z � E2

0=ð!2cÞ are a common

feature of asymptotic momentum distributions for ioniza-
tion in the relativistic regime [22], Fig. 1(a) reveals also a
shift of the global maximum of the asymptotic momentum
distribution from ðpf;x; pf;zÞ ¼ ð0; 0Þ in the nonrelativistic

regime to ð0; Ip=ð3cÞÞ in the relativistic regime [24]. The

shift of the global maximum arises during the under-the-
barrier motion. This may be realized by calculating the
distribution of the kinetic momentum at the exit nonrelativ-
istically and comparing it with the fully relativistic result;
see Fig. 1(b). To identify the relevant relativistic effects, we
expand the Dirac equation (1) retaining the magnetic dipole
correction and the leading relativistic correction to the
electron’s kinetic energy (termed mass-shift correction)

i@tj�i ¼
�
p̂2
x

2
þ p̂2

y

2
þ ½p̂z � r �EðtÞ=c�2

2

� p̂4

8c2
þ VðrÞ þ r �EðtÞ

�
j�i: (3)

This expansion is justified because relativistic effects for
the under-the-barrier motion are determined by the parame-
ter Ip=c

2 and even for the extreme parameter set used the

tunneling process is only weakly relativistic. This can be
seen from Fig. 1(b), where the calculation based on Eq. (3)
recovers the exact result from Eq. (1). Furthermore, the
figure shows that the magnetic dipole term (Lorentz-force)
is responsible for the momentum shift and a decrease of the
tunneling probability whereas the mass-shift correction
counteracts the latter effect.
A quasiclassical picture for relativistic tunneling.—For

a qualitative interpretation of the tunneling procedure
(� � 1) and the momentum shift, we omit the mass-shift
correction as justified above and employ the quasistatic
approximation in the quasiclassical picture. Then the
Hamilton function corresponding to Eq. (3) yields at maxi-
mal laser intensity

H ¼ p2
x

2
þ p2

y

2
þ ðpz þ xE0=cÞ2

2
þ VðrÞ � xE0; (4)
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FIG. 1 (color). (a) Density plot of the asymptotic spin-
averaged electron momentum distribution at the detector. The
distribution’s maximum (white cross) is shifted from pf;z ¼ 0

(nonrelativistic limit, white line) to pf;z ¼ Ip=ð3cÞ. (b) The

distribution of the electron’s kinetic momentum in the laser
propagation direction at the tunnel exit at time t0, with maximal
laser electric field, in the electric dipole approximation (green,
dotted line), including the magnetic dipole correction (blue,
dashed line), and the magnetic dipole plus the mass-shift cor-
rection (red, dot-dashed line) and fully relativistically via the
Dirac equation in the SFA (black, solid line). The applied
parameters are Ip=c

2 ¼ 0:25 and E0=Ea ¼ 1=30.
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with the canonical momenta px, py, and pz, r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. In Eq. (4) the electric field gauge [20,21]

ensures that the Hamilton function equals the total energy
�Ip. Similarly as shown in the nonrelativistic case [12], we

estimated numerically that the relativistic deviations still
result in tunneling dynamics in close vicinity along the x
axis (the polarization direction). The atomic potential’s
central force in the direction of the y axis and the z axis
(the laser’s propagation directions) is then also negligible
in the tunneling region and the canonical momenta py and

pz become approximately conserved. Consequently, the
electron dynamics is separable and the equation H ¼
�Ip can be written as

�Ip �
"
p2
y

2
þ ðpz þ xE0=cÞ2

2

#
¼ p2

x

2
þ ½VðxÞ � xE0�: (5)

Equation (5) is a generalization of an often applied non-
relativistic one-dimensional model [12]. It may be inter-
preted as follows. During the quasi one-dimensional
motion along the laser polarization direction, the electron
propagates through the barrier VeffðxÞ ¼ VðxÞ � xE0 with
a position dependent total energy "ðxÞ ¼ �Ip � fp2

y=2þ
½pz þ xE0=c�2=2g, which is the difference between
the binding energy and the kinetic energy of the motion
in the propagation direction of the laser. Equation (5)

yields the momentum in electric field direction px ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VeffðxÞ � "ðxÞ�p

. Note, that the kinetic momentum in
the propagation direction of the laser pz;kinðxÞ¼pzþxE0=c
in the laser’s propagation direction is shifted due to the
Lorentz force during the under-the-barrier motion causing
a modification of "ðxÞ and, consequently, a modification
of the momentum px as compared to the nonrelativistic
case where the kinetic momentum pz;kinðxÞ ¼ pz is con-

served. The WKB tunneling probability is proportional to
expð��Þ, where � is given by the integral �¼�2i

R
xe
xi
pxdx

over the classical forbidden region xi � x � xe [8,11].
For short-range potentials the WKB tunneling proba-
bility is maximal when tunneling starts with a negative
kinetic momentum pz;kinðxiÞ ¼ �2Ip=ð3cÞ reaching the

tunnel exit with positive pz;kinðxeÞ ¼ Ip=ð3cÞ. At this opti-
mal momentum the energy "ðxÞ is strictly below �Ip,

which is the corresponding expression in the case of the
electric dipole approximation; see Fig. 2. This indicates a
decrease of the maximal tunnel probability with respect to
the nonrelativistic case, cf. with Fig. 1(b).

In the WKB approximation the electron wave function
evolves along quasiclassical trajectories [8,11]. Under the
barrier, they are described by classical Hamiltonian me-
chanics developing in imaginary time. The imaginary time
determines the exponential damping of the ionized electron
wave function during tunneling. In particular, a time inter-
val �i�K is required to pass the barrier; thus, the wave
function is reduced by a factor e�Ip�K while tunneling.

Under the barrier the Lorentz force of order �aB0=c
acting for the Keldysh time �K causes a total momentum
shift of �pz;kin ¼ pz;kinðxeÞ � pz;kinðxiÞ � �K�aB0=c�
ðxe � xiÞE0=c� Ip=c. In order to compensate for the acce-

leration in positive z direction by the Lorentz force, the z
component of the initial kinetic momentum at entering the
barrier has to be negative similar to Ref. [25]. The kinetic
momentum in the propagation direction of the laser is
positive at the barrier exit, see the dashed blue lines in
Fig. 1(b), in contrast to the nonrelativistic case where it
vanishes. Considering the mass-shift correction in addition
to the magnetic dipole terms increases the tunneling proba-
bility; see Fig. 1(b). The general tunneling picture, how-
ever, is not affected.
Tunneling time.—We point out that although the Lorentz

force induces a momentum shift along the laser propa-
gation direction during the under-the-barrier motion, never-
theless, in the quasistatic WKB approximation the tunneling
process happens instantaneously and thus there is no real
coordinate drift in laser propagation direction as a result of
the under-the-barrier motion. However, in reality the under-
the-barrier motion requires a small nonzero time span which
can be derived by going beyond the quasistaticWKB theory.
For this purpose we use the exact wave function of the

electron in the quasistatic potential formed by the laser
field and a zero-range atomic potential. The kinetic energy
term of the Schrödinger equation with the magnetic dipole
corrections is expanded in the coordinate x around the
tunnel exit coordinate xe. Then, the electron wave function
in the continuum is derived as

cþðxÞ ¼ TAife�i�=3½21=3ðxE0 � IpÞ=E2=3
0 þ�ðxÞ�g; (6)

where �ðxÞ¼ðpzcþIpÞð3pzcþ2xE0þIpÞ=3c2ð2E0Þ2=3,
and Ai denotes the Airy function. The real transmission
coefficient T is obtained by matching cþðxÞ with the
bound state wave function [11] c 0ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2��a

p
=½�aþ

ðp2
y þ p2

zÞ=ð2�aÞ� expf�ð�a þ ðp2
y þ p2

zÞ=ð2�aÞ�xg.
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FIG. 2 (color online). Scheme of laser induced tunneling in a
Coulomb potential with Ip=c

2 ¼ 0:25. The potential barrier

VðxÞ � xE0 (black line) is displayed with E0=Ea ¼ 1=30 and
the relativistic and nonrelativistic modified energy levels. The
dotted green line indicates the description in electric dipole
approximation, whereas magnetic dipole effects are taken into
account for the solid red line. The momenta py and pz are chosen

such that the WKB tunneling probability is maximal.
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The time it takes for the maximum of the wave packet
to reach position x [Eisenbud-Wigner-Smith time delay
�EðxÞ] and the drift of the electron wave packet in propa-
gation direction at position x during the under-the-barrier
motion are determined by the phase of the wave function
arg½cþðxÞ� [17], viz. �EðxÞ ¼ �@ arg½cþðxÞ�=@Ip and

zðxÞ ¼ �@ arg½cþðxÞ�=@pz. Figure 3(a) shows that the
electron spends some time under the barrier when
it is close to the exit. The tunneling time, i.e., the time

delay at the tunneling exit is given by �EðxeÞ �
35=6

ffiffiffiffi
�

p ðEa=E0Þ2=3=½2�ð1=6ÞIp� and the drift distance at

the tunneling exit is zðxeÞ �
ffiffiffiffi
�

p
Ip=½31=6�ð1=6ÞE2=3

0 c�.
The tunneling time of order 1=Ip may also be estimated

via Heisenberg’s uncertainty relation when assuming an
energy uncertainty of order of Ip. The drift size along the

laser propagation direction at the tunneling exit is propor-
tional to the tunneling time with a proportionality factor
that is equal to the kinetic momentum in the laser’s propa-
gation direction at the tunnel exit, zðxeÞ ¼ pz;kinðxeÞ�EðxeÞ.
This indicates that the drift is shaped during the Eisenbud-
Wigner-Smith tunneling time. Note that for the applied
parameters the drift size at the tunneling exit zðxeÞ is of
order of 1=c. The drift along the laser propagation direc-
tion during the under-the-barrier motion is due to the
Lorentz force and disappears in the nonrelativistic limit.
The time delay �EðxÞ, however, behaves similarly to that
shown in Fig. 3(a) also in the nonrelativistic regime.

The time delay far from the tunnel exit, thatmeans x�xe*

E�1=3
0 , follows approximately �EðxÞjx!1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðx�xeÞ=E0

p
.

The latter corresponds to the quasiclassical motion time
of the electron which tunnels instantaneously and contin-
ues at xe with vanishing initial momentum in the laser’s
electric field direction px ¼ 0, reaching x at a moment t
(x� xe ¼ E0t

2=2). Therefore, we can conclude that the
signature of the nonzero tunneling time exists only in a

small area near the tunnel exit at distances �x� E�1=3
0 and

disappears at far distances near the detector; see Fig. 3(b).
This consequence is relevant also in the nonrelativistic case
and explains the observation of the vanishing tunneling
time in the experiments [19]. Mathematically, the problem
of the vanishingWigner time at large distances arises when
the laser-induced quasistatic barrier is linear in the x coor-
dinate around the exit of the tunneling electron in the
interval xe � �x; xe þ �x, which is the case when the
saddle point of the effective potential barrier formed by
the laser and atomic potentials is far from the tunneling
exit. Instead, in the regime close to over-the-barrier ion-
ization at E0=Ea > 1=25 the effective potential has a para-
bolic character and analog calculations as carried out here
indicate a measurable Eisenbud-Wigner-Smith tunneling
time [26]. In interpreting experimental results on this
tunneling time, the distortion of the electron trajectories
by the Coulomb field of the ionic core during the sub-
barrier as well as out-of-the-barrier motion should be
properly accounted for, see Ref. [27].
Numerical simulations.—To corroborate our analytical

arguments, we have carried out an ab initio simulation of
the tunneling process in a highly charged ion in a laser field
of relativistic intensities by solving the time-dependent
Dirac equation (1) numerically [28]. Figure 4 shows the
wave packet of the active electron at the moment when the
laser electric field is at its maximum. Here one part of
the wave packet is still bound or under the barrier while the
other part is already in the continuum. The part under
the barrier is not exactly symmetric to the laser polariza-
tion direction. There is a small drift motion into the laser
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FIG. 4 (color online). Numerical simulation of the electron
wave function in a soft-core potential via the Dirac equation.
The density plot shows the electron density at the moment
when maximal laser field strength is attained. The solid black
line indicates the maximum of the density in the laser propaga-
tion direction while the dashed line corresponds to the most
probable trajectory resulting from the quasiclassical description.
Solid green lines correspond to the border of the classical
forbidden region. White arrows and the cross indicate the
directions of the laser’s electromagnetic fields and its propaga-
tion direction. The inset shows a scale-up of the region close to
the tunnel exit. The applied parameters are Ip=c

2 ¼ 0:25,

E0=Ea ¼ 1=30, and � ¼ 0:1.
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FIG. 3. (a) The scaled time delay vs the coordinate along the
laser polarization direction, via a quantum mechanical (black,
solid line) and a quasiclassical description (gray, dashed line).
(b) The electron wave packet trajectory in the x-z-plane, via a
quantum mechanical (black, solid line) and a quasiclassical
description (gray, dashed line). In both subfigures x=xe < 1
corresponds to under-the-barrier motion with xe ¼ Ip=E0 denot-

ing the tunnel exit coordinate. The applied parameters are
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2 ¼ 0:25, E0=Ea ¼ 1=30, and the most probable initial

kinetic momenta pz;kinðxiÞ ¼ �2Ip=ð3cÞ and py ¼ 0.
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propagation direction which is of the order z� 1=c in
accordance with our estimation above.

Conclusion.—Laser-driven relativistic tunneling dynam-
ics was shown to be understood by a simple picture incor-
porating a scalar tunneling barrier and position-dependent
energy levels. A spatial shift and a momentum shift along
the laser propagation direction at the tunnel exit were
identified as signatures of the relativistic dynamics through
the tunneling barrier. The spatial drift is shown to be
proportional to the Eisenbud-Wigner-Smith time delay,
while the momentum shift to the Keldysh time. While
the spatial shift features intrinsic limitations for its mea-
surement, the momentum shift is of the order of 10 a.u. for
the applied parameters and within the reach of up-to-date
experimental techniques [19].

We are grateful to C. Müller for valuable discussions at
the onset of the project.
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