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Contrary to conventional wisdom that all dynamics are a result of interference (or ‘‘dephasing’’)

between many (at least two) energy eigenstates, we show that when a continuum of states is present, even

a single molecular eigenstate undergoes ‘‘steady-state’’ quantum dynamics. Moreover, this type of

dynamics can be initiated by incoherent (e.g., solar) light sources. Continua are invariably involved in

molecular systems due to a variety of sources such as the ever present bath modes, spontaneously emitted

photons; the detachment of electrons, or the dissociation of chemical bonds. Contrary to a single bound

energy eigenfunction which is a real (‘‘standing-waves’’) function that carries no flux and, hence, has no

dynamics, a single (complex) continuum energy eigenfunction carries ‘‘steady-state’’ flux given by the

group velocity of the energetically narrow wave packet it represents. When this energy eigenfunction is a

multimode resonance embedded in a continuum via a chain of intramolecular couplings, this dynamics

may be initiated by any (light) source, and is controlled, contrary to coherent wave packet dynamics, by

the position of the resonance rather than its width.
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Introduction.—There is now growing evidence [1,2] that
the coherent wave packet dynamics induced by ultrashort
coherent pulses is quite different from the dynamics in-
duced by incoherent sources, which in the long time limit
results in the excitation of a multitude of phase-unrelated
molecular eigenstate(s) (ME) [1–3]. Therefore, experi-
ments using ultrafast coherent pulses that excite coherent
wave packets and display long-lived electronic coherences
[4–9], do not really tell us what happens when naturally
occurring biological systems are excited by incoherent
light, such as solar radiation.

Given this point of view, the origin and nature of the
dynamics observed when incoherent sources, such as solar
radiation, excite ME, become a bit of a mystery. This is
because a single ME is expected to have no dynamics. Yet,
quite clearly dynamical processes do occur under conditions
of incoherent excitation of isolated ME, e.g., photosynthesis.

In this paper we show that the quantum dynamics of a
single ME can be naturally explained when the ME is
‘‘dressed’’ by a continuum of states. Such a continuum may
be due, for example, to the ever-present environment [10,11],
or to the spontaneous emission of a photon [12] (or electron
[13]) following the excitation, or to the breakage of a chemi-
cal bond [13–15], or to a combination of all of the above.
Contrary to a bound-ME, which is a real (standing-waves)
function and carries no flux and, hence, has no dynamics, a
continuum-ME may be a complex function which carries
(‘‘steady-state’’) flux [16]. We show that resonances which
arise when bound states are coupled to such flux carrying
continua of states also carry flux and, therefore, exhibit
dynamics under the action of incoherent light sources.

A brief review of scattering resonances theory.—We
consider jE; n�i the individual continuum energy eigenstates

whose accumulation forms a scattering resonance. Each
such state is a solution of the time independent Schrödinger
equation

½E� i��H�jE; n�i ¼ 0; (1)

where the�i� serves to remind us of the incoming boundary
conditions,

lim
t!1e

�iðE�i�Þt=@jE; n�i ¼ Nne
�iðE�i�Þt=@eikn�r; (2)

where n denotes the internal states of the collision
fragments—the ‘‘channel’’ index, and kn—the momentum
in that channel.
We solve the problem using the ‘‘partitioning tech-

nique’’ [17–21], which is a general method for construct-
ing the solutions of an interaction-containing Schrödinger
equation from its (assumed known) noninteracting parts,
represented by two orthogonal projection operators Q and
P, which span the entire space PþQ ¼ I, where I is the
identity operator.
Multiplying Eq. (1) once by P and once byQ, we obtain

½E� i�� PHP�PjE; n�i ¼ PHQjE; n�i;
½E� i��QHQ�QjE; n�i ¼ QHPjE; n�i:

(3)

We now define P and Q as

P¼X
n

Z
dEjE;n�;1ihE;n�;1j; Q¼X

s

j�sih�sj; (4)

where jE; n�; 1i are continuum states and j�si are
bound states which solve the decoupled parts of the above
equations,
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½E� i�� PHP�jE; n�; 1i ¼ ½Es �QHQ�j�si ¼ 0: (5)

We first solve for PjE; n�i as the sum of the homogeneous
solution (jE; n�; 1i) and a particular solution of Eq. (3)
obtained by inverting ½E� i�� PHP�,
PjE;n�i¼PjE;n�;1iþ½E� i��PHP��1PHQjE;n�i:

(6)

Substituting this solution into Eq. (3) and reordering terms,
we obtain that

½E� i��QHQ�QjE; n�i ¼ QHPjE; n�; 1i; (7)

where QHQ � QHQþQHP½E� i�� PHP��1PHQ.
We obtain from Eq. (7) that

QjE; n�i ¼ ½E� i��QHQ��1QHPjE; n�; 1i: (8)

Once QjE; n�i is known, PjE; n�i can be computed from
Eq. (6). We have thus managed to construct the solution of
the full Schrödinger equation from the decoupled solu-
tions. This, contrary to the Lippmann Schwinger formal
solutions [22], is a it practical solution. To make this aspect
even more obvious, we now present an explicit represen-
tation of QHQ using the well-known identity

½E� i��PHP��1¼P�½E�PHP��1þ i��ðE�PHPÞ;
(9)

with P� denoting Cauchy’s Principal Value integration.
With the aid of the above, P�½E� PHP��1 is given, using
the spectral resolution of an operator, as

P�½E� PHP��1 � X
n

P�

Z dE0

E� E0 jE0; n�; 1ihE0; n�; 1j:

(10)

Assuming for simplicity that we are dealing with an
isolated resonance for which QHQ is a single matrix
element, we can write ½E� i��QHQ� as

h�sj½E� i��QHQ�j�si
¼ ½E� Es ��sðEÞ � i�sðEÞ=2�; (11)

where �sðEÞ �
P

n2�jVðsjE; nÞj2,

�sðEÞ � P�

X
n

Z
dE0jVðsjE0; nÞj2=ðE� E0Þ

with VðsjE; nÞ � h�sjHjE; n�; 1i.

It follows that the AðsjE; nÞ � h�sjE; n�i bound states
expansion coefficients are given as

AðsjE; nÞ ¼ VðsjE; nÞ
E� Es ��sðEÞ � i�sðEÞ=2 ; (12)

giving rise to the typical ‘‘resonance’’ line shape. Using
Eqs. (6) and (9) we obtain an expression for the continuum
expansion coefficients,

hE;m�;1jE0;n�i
¼�ðE�E0Þ�n;mþVðE;mjsÞ

�
P�

1

E�E0 þ i��ðE�E0Þ
�

�h�sjE0;n�i:
Hence,

PjE;m�i ¼ X
n

�
jE; n�; 1iBm;nðEÞ

þ P�

Z
dE0jE0; n�; 1iCm;nðE; E0Þ

�
;

where

Bm;nðEÞ � �n;m þ i�VðE;mjsÞAðsjE; nÞ
Cm;nðE; E0Þ � VðE;mjsÞAðsjE0; nÞ=ðE� E0Þ: (13)

The single mode flux associated with a set of bound
states coupled to a set of continua.—We assume for sim-
plicity that the decoupled continuum states hrjE; n�; 1i,
are given as energy normalized hE; n�; 1jE0; n�; 1i ¼
�ðE� E0Þ, plane waves,
hrjE; n�; 1i ¼ Nne

ikn�r; where Nn ¼ f�=ð2�knÞg1=2;
(14)

with � being the reduced mass of the continuum mode.
With this normalization the magnitude of the flux density
per unit energy of hrjE; n�; 1i is given as F ½E; n; 1� ¼ 1

2� .

The fully interacting continuum wave functions are now
given as

hrjE;m�i ¼ hrj�siAðsjE; nÞ þ
�
Nn expðikn � rÞBm;nðEÞ

þ P�

Z
dE0Nn expðikn � rÞCm;nðE; E0Þ

�
:

The flux associated with these functions is given as

Im
�

hE;m�jri d
dr

hrjE;m�i¼Im
�

½h�sjriA�ðsjE;mÞþX
n

Nne
�ikn�rB�

m;nðEÞþP�

Z
dE0N0

ne
�ik0

n�rC�
m;nðE;E0Þ�

�
�
dhrj�si

dr
AðsjE;mÞþ i

X
n0
Nn0kn0e

ikn0 �rBm;n0 ðEÞþP�

Z
dE0N0

n0k
0
n0e

ik0
n0 �rCm;n0 ðE;E0Þ

�
: (15)

When we execute the multiplication in Eq. (15) we obtain four terms: the first (Bound-Bound) term is zero,
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F B�B ¼ Im
�

jAðsjE;mÞj2h�sjri ddr hrj�si ¼ 0;

because it is associated with a real term. It is the second and third Bound-Continuum interference terms, given as

F B�C ¼ Im
�

ih�sjriA�ðsjE;mÞ
�X

n

Nnkn; e
ikn�rBm;nðEÞ þ P�

Z
dE0N0

nk
0
ne

ik0
n�rCm;nðE; E0Þ

�
;

that contain the flux imparted to the bound states due to their interaction with the continuum. However, because
hrj�si���!r!1

0, F B�C does not contribute to the asymptotic (e.g., bond-breaking) flux.
It is the fourth term,

F C�C ¼ Im
�

i
X
n;n0

�
Nne

�ikn�rB�
m;nðEÞ þ P�

Z
dE0N0

n; e
�ik0

n�rC�
m;nðE; E0Þ

�

�
�
Nn0kn0 � eikn0 �rBm;n0 ðEÞ þ P�

Z
dE0N0

n0k
0
n0e

ik0
n0 �rCm;n0 ðE;E0Þ

�
; (16)

that directly tells us the flux associated with the dissocia-
tion, or exchange, or isomerization, to form the final
photo-products.

Equation (16) has a very simple interpretation: taking
into account the form of Nn [Eq. (14)] we see that the
asymptotic flux is essentially the 1

2� classical flux associ-

ated with the energy normalized densities of Eq. (14),
modulated by the probability of the bound states transiting
to the continuum, as embodied in the Bm;nðEÞ and

Cm;n0 ðE; E0Þ coefficients of Eqs. (13) and (16).

Contrary to coherent dynamics, it is not the width of the
resonance that determines the flux: it is the energetic
position of the resonance (via the height of the Bm;nðEÞ
and Cm;nðE; E0Þ coefficients at that energy) that modulates

the incoherent asymptotic flux. Therefore, some levels will
have much higher fluxes associated with them relative to
other levels. We note that whereas the Lorentzian-like
Bm;nðEÞ contributes mostly to levels near the resonance

center, P�

R
dE0Cm;nðE; E0Þ=ðE� E0Þ has a dispersion-like

shape and is minimal near the resonance center, thus
contributing to the flux of ‘‘off-resonance’’ levels.
Equation (16) is devoid of any attribute of the light that

initiated the photochemical process of interest and, there-
fore, has nothing to do with the de-phasing dynamics
between various eigenstates of the energetically broad
wave packets prepared by coherent pulsed excitations
[4–9]. However, it can be easily generalized to include
both coherent and incoherent dynamics by realizing that a
coherent pulse creates a wave packet of jE; n�i resonances,

�nðtÞ ¼
Z

dEaEjE; n�i expð�iEtÞ; (17)

where aE are the pulse-dependent preparation coefficients
of the initial wave packet. The asymptotic flux in this case is
given as

F C�CðtÞ ¼ Im
�

i
X
n;n0

Z
dEdE00a�EaE00e�iðE00�EÞt

�
Nne

�ikn�rB�
m;nðEÞ þ P�

Z
dE0N0

ne
�ik0

n�rC�
m;nðE; E0Þ

�

�
�
Nn0k

00
n0e

ik00
n0 �rBm;n0 ðE00Þ þ P�

Z
dE0N0

n0k
0
n0e

ik0
n0 �rCm;n0 ðE00; E0Þ

�
: (18)

Equation (18) contains all of the coherent and incoherent
dynamics for a single mode consisting of a set of bound
states coupled to a set of continua. We now generalize it to
the multimode case.

The multimode fluxes.—So far we have obtained expres-
sions for the flux carried by a single mode in which a bound
state is coupled to a continuum of plane waves. We now
wish to extend this theory to a nested chain of N coupled
modes,

ððð1 $ 2Þ $ 3Þ $ � � �NÞ:
The above diagram implies that we first consider (as in the
previous section) a space composed of mode 1. We then

augment the space by considering a product space
composed of two modes, jr1ijr2i. The Hamiltonian is
now written as H ¼ H1 þH2 þ V1;2, where H1 is the

full Hamiltonian of mode 1 (i.e., the total Hamiltonian of
the previous section), and H2 is the full Hamiltonian of
mode 2 (assumed to have only bound states). V1;2 is the

interaction term between the two modes satisfying, per
definition, the asymptotic condition

lim ðr1 or r2Þ!1V1;2 ¼ 0:

Denoting by Eð2Þ
s and �ð2Þ

s the eigenenergies and bound
eigenstates of H2,

PRL 110, 153003 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

12 APRIL 2013

153003-3



½Eð2Þ
s �H2�j�ð2Þ

s i ¼ 0;

and by jE; n�; 2i the mode-1 fully interacting states of the
previous section,

½E�H1�jE; n�; 2i ¼ 0;

we define the Q and P projectors as

Q ¼ j0ij�ð2Þ
s i � h0jh�ð2Þ

s j;
P ¼ X

s0�s;n

Z
dEjE� Eð2Þ

s0 ; n
�; 2ij�ð2Þ

s0 i

� hE� Eð2Þ
s0 ; n

�; 2jh�ð2Þ
s0 ; 2j;

with j0i signifying the ground state in the 1 mode.
We now define a compound index n to includes the

mode-1 continuum channel index n and the index s0 used
in the definition of jE� Eð2Þ

s0 ; n
�; 2i state. Explicitly,

jE;n�; 2i � jE� Eð2Þ
s0 ; n

�; 2i: (19)

Designating as jE;n�i the full solution of the 1þ 2modes
space, we expand this state as

jE;m�i ¼ j0ij�ð2Þ
s ih0jh�ð2Þ

s jE;m�i
þ X

nðs0�sÞ

Z
dE0jE0;n�; 2ij�ð2Þ

s0 i

� hE0;n�; 2jh�ð2Þ
s0 jE;m�i;

whose solution in coordinate representation is

hr1; r2jE;m�i
¼ X

s

hr1j0ihr2j�ð2Þ
s iAðsjE;mÞ

þX
n

hr1jE;n�; 2ihr2j�ð2Þ
s0 iBm;nðEÞ

þ P�

Z
dE0hr1jE0;n�; 2ihr2j�ð2Þ

s0 iCm;nðE; E0Þ;

where

AðsjE;nÞ � h0jh�ð2Þ
s jE;n�i¼ VðsjE;nÞ

E�Eð2Þ
s ��sðEÞ� i�sðEÞ

2

;

Bm;nðEÞ � �n;mþ i�VðE;m; 2jsÞAðsjE;nÞ;
Cm;nðE;E0Þ � VðE;mjsÞAðsjE0;nÞ=ðE�E0Þ; (20)

with

VðsjE;nÞ � h0jh�ð2Þ
s jHjE;n�; 2ij�ð2Þ

s0 i;
�sðEÞ �

X
n

2�jVðsjE;n; 2Þj2;

�sðEÞ � P�

X
n

Z
dE0jVðsjE0;nÞj2=ðE� E0Þ:

Extending the formula of Eq. (16), the asymptotic
flux associated with the bound states of mode 2 in the
augmented (1þ 2) space is given as

F ð2Þ
C�C ¼ Im

�
i
X
n;n0

½hE;n�; 2jr1ih�ð2Þ
s0 jr2iB�

m;nðEÞ þ P�

Z
dE0hE0;n�; 2jr1ih�ð2Þ

s0 jr2iC�
m;nðE; E0Þ�

�
�
d

dr
hr1jE;n0�; 2ihr2j�ð2Þ

s0 iBm;n0 ðEÞ þ P�

Z
dE0 d

dr
hr1jE0;n0�; 2ihr2j�ð2Þ

s0 iCm;n0 ðE; E0Þ
�
; (21)

where the d=dr operation can be performed with respect to
r ¼ r1 or r ¼ r2.

Given the solution of the (1þ 2) problem we can now
add mode 3 with the total Hamiltonian given as

H ¼ ðH1 þH2 þ V1;2Þ þH3 þ V1;2;3;

where

lim
ðr1 or r2 or r3Þ!1

V1;2;3 ¼ 0;

and repeat the procedure outlined in this section. The result
is a simple iterative procedure for obtaining multimode
resonant states and the fluxes associated with them for
each of these modes. We see from Eq. (21) that although
the expressions for the flux are more complicated than in the
single mode case, they clearly show that one mode being
coupled to a continuum is enough to permeate all other
modes with flux carrying continuum character. As in
Eqs. (17) and (18) of the previous section, we can generalize

Eq. (21) to include, in addition to the present incoherent
case, the coherent ultrashort pulse preparation case, thereby
obtaining a very attractive method for generating a com-
plete quantum solution of intramolecular dynamics.
Conclusions.—We have introduced a new general

method for solving the quantum intramolecular dynamics
for multimode systems. We have shown that the existence
of a flux-carrying continuum coupled to even 1 mode
permeates all other modes, even those that are very far
removed in the intramolecular coupling scheme from the
continuum. By deriving a formula for the flux carried by a
single multimode molecular eigenstate we have demon-
strated the existence of incoherent dynamics, which is
unrelated to the existence, or coherence with respect to
other ME. As shown in Refs. [1,2], the initial conditions for
excitation with an incoherent light source such as the sun
are the productions of a set of individual phase-unrelated
eigenstates. Hence, the incoherent dynamics discussed
here always exists and is being induced by all light sources.
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The present discussion may be viewed as supplementing
Einstein’s incoherent rate equations for absorption or emis-
sion of radiation which account for population changes due
to external fields, in that we discuss the possibility that a
single ME whose population is fixed can have dynamics. In
addition to this type of incoherent dynamics, there are
coherent dynamics which follow excitations with coherent
pulses, arising from the de-phasing of each ME with
respect to all others. Such coherent pulsed excitations tell
us, however, nothing about the situation with incoherent
sources, where no coherent dynamics is exhibited [1,2].
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