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The mechanism of radiative electroweak symmetry breaking occurs through loop corrections, and

unlike conventional symmetry breaking where the Higgs mass is a parameter, the radiatively generated

Higgs mass is dynamically predicted. Padé approximations and an averaging method are developed to

extend the Higgs mass predictions in radiative electroweak symmetry breaking from five- to nine-loop

order in the scalar sector of the standard model, resulting in an upper bound on the Higgs mass of

141 GeV. The mass predictions are well described by a geometric series behavior, converging to an

asymptotic Higgs mass of 124 GeV consistent with the recent ATLAS and CMS Collaborations

observations. Similarly, we find that the Higgs self-coupling converges to � ¼ 0:23, which is significantly

larger than its conventional symmetry breaking counterpart for a 124 GeV Higgs mass. In addition to this

significant enhancement of the Higgs self-coupling and HH ! HH scattering, we find that Higgs decays

to gauge bosons are unaltered and the scattering processes Wþ
L W

þ
L ! HH, ZLZL ! HH are also

enhanced, providing signals to distinguish conventional and radiative electroweak symmetry breaking

mechanisms.
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The observation of a 125 GeV Higgs candidate by the
ATLAS and CMSCollaborations [1,2], along with support-
ing evidence from CDF and D0 Collaborations [3],
provides preliminary information for evaluating different
mechanisms of electroweak (EW) symmetry breaking.
Coleman and Weinberg originally demonstrated that spon-
taneous symmetry breaking can occur through loop (radia-
tive) corrections to the effective potential in the absence
of a tree-level Lagrangian quadratic scalar term [4]. This
radiative EW symmetry-breaking mechanism is conceptu-
ally appealing because the Higgs mass is no longer a free-
parameter as it is in conventional EW symmetry breaking,
but is a dynamical quantity which can be self-consistently
predicted by the theory. The absence of a conventional-
symmetry-breaking quadratic scalar term also addresses
aspects of the scale hierarchy problem [5] and the fine-
tuning problem [6].

The small-Higgs-coupling radiative symmetry-breaking
solution originally discovered by Coleman and Weinberg
leads to an order 10 GeV Higgs mass which has been
excluded by experiment. This result relies upon the domi-
nance of gauge couplings over Yukawa couplings in the
effective potential; the large Yukawa coupling of the top
quark (which was not known at the time of Coleman and
Weinberg) destabilizes the small-Higgs-coupling solution.
However, it has been demonstrated that a large-Higgs-
coupling solution exists that results in a significantly larger
Higgs mass prediction [7,8]. Similar radiative-symmetry-
breaking solutions have been found in extensions of the
standard model [9].

The large-Higgs-coupling solutions for radiative symme-
try breaking are intrinsically challenging because higher-
loop corrections can become important. Fortunately, one

can demonstrate that Yukawa and gauge couplings have
minimal effect on the analysis, and hence the scalar field
sector of the standard model [a globally symmetric Oð4Þ
scalar field theory] captures the essential features of the
effective potential and radiative symmetry breaking in the
full standard model [10], providing a simpler field theory
for evaluating higher-loop corrections. In particular, at
leading-order the largest secondary effect of the top-quark
Yukawa coupling x ¼ xt ¼ 0:025 only has a 2% effect on
the Higgs mass [10,11]. This arises as a combination of two
main effects: xt represents 15% of the one-loop � function
for the Higgs self-coupling in the large-coupling solution,
and the x-independent tree-level contribution suppresses
the x dependence in the Higgs mass prediction.
Although such higher-loop calculations of the effective

potential would initially seem daunting, in the Coleman-
Weinberg (CW) renormalization scheme [4,12], the
effective potential for scalar field theories with global
OðNÞ symmetry can be uniquely determined from the
renormalization-group functions [13]. Because the
renormalization-group functions for OðNÞ-symmetric sca-
lar �4 theories are known to five-loop order in the MS
scheme [14], and methods are known for converting them
to the CW scheme [15], calculation of the five-loop effec-
tive potential inOðNÞ�4 theory has been achieved [13,16].
TheHiggsmass prediction resulting from these higher-loop
corrections shows evidence of slow convergence as loop
order is increased, resulting in a Higgs mass upper bound of
165 GeV from the five-loop effective potential [11].
The purpose of this Letter is to assess whether radiative

EW symmetry breaking can accommodate a 125 GeV
Higgs mass as observed by the ATLAS and CMS
Collaborations [1,2] by estimating higher-loop effects on
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the Higgs mass prediction. This is achieved by exploiting
the success of Padé approximation methods for the
renormalization-group functions of OðNÞ �4 theory
[17–19] to estimate higher-loop contributions to the effec-
tive potential and Higgs mass. We also argue that averaging
subsequent orders of the effective potential further extends
the estimates to two loops higher accuracy. By combining
these estimation methods, we obtain a nine-loop Higgs
mass upper bound of 141 GeV and observe an empirical
pattern of Higgs mass estimates that extrapolates the Higgs
mass prediction to a value in close agreement with ATLAS
and CMS [1,2]. However, mass predictions alone are not
sufficient to distinguish conventional and radiative EW
symmetry breaking. Following Ref. [20] we identify pos-
sible phenomenological signatures, including the Higgs
self-coupling, that would distinguish a 125 GeV Higgs in
conventional and radiative EW symmetry breaking.

In OðNÞ-symmetric massless ��4 theory (i.e., the
Standard Model scalar sector corresponds to N ¼ 4), the
effective potential in the CW scheme takes the form [4]

Vð�;�;�Þ ¼ X1

n¼0

Xn

m¼0

�nþ1TnmL
m�4; (1)

where L ¼ logð�2=�2Þ, �2 ¼ P
N
i¼1 �

2
i , and � is the

renormalization scale. The summation includes leading
logarithm (LL), next-to-leading logarithm (NLL), next-
to-next-to-leading logarithm N2LL, and in general NnLL
terms. The NnLL term Sn can be isolated by rearranging
the summation in the form

Vð�;�;�Þ ¼ X1

n¼0

�nþ1Snð�LÞ�4; (2)

where Snð�LÞ ¼
P1

m¼0 Tnþmmð�LÞm. The renormalization

group (RG) equation
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leads to the following coupled differential equations for the
functions Snð�Þ [13]

0 ¼
�
ð�2þ b2�Þ d

d�
þ ðnþ 1Þb2 þ 4g1

�
Sn

þ Xn�1

m¼0

��
2gn�m þ bnþ2�m�

d

d�

�

þ ½ðmþ 1Þbnþ2�m þ 4gnþ1�m�
�
Sm; (5)

where we show below that g1 ¼ 0. We thus see that the
nþ 1-loop renormalization-group functions are needed to
determine Sk for k ¼ 0; 1; 2; . . . ; n. The boundary condi-
tions Snð0Þ ¼ Tn0 needed to solve (5) emerge from the CW

renormalization condition d4V
d�4 j�¼� ¼ 24� [4,12], result-

ing in the constraints [13]

0¼ 16
d4

d�4
Skð0Þ þ 80

d3

d�3
Skþ1ð0Þ þ 140

d2

d�2
Skþ2ð0Þ

þ 100
d

d�
Skþ3ð0Þ þ 24Skþ4ð0Þ ðk¼ 0;1;2; . . .Þ: (6)

The boundary condition Snð0Þ for the differential equation
(5) can then be obtained by iteratively solving for the
lower-order Sk, where k ¼ fn� 1; n� 2; n� 3; n� 4g.
Thus in the CW scheme, the effective potential to NpLL
order is uniquely determined by the pþ 1-loop RG func-
tions. However, since we only have the limited information
of the renormalization group functions, we need to truncate
the process at a certain NpLL order

Vp ¼ Xp

n¼0

�nþ1Snð�LÞ�4 þ Xpþ4

i¼pþ1

Ti0�
iþ1�4; (7)

where the last term represents a counterterm which is
constrained by the CW renormalization condition. It
should be noted that this procedure can reproduce the
explicit two-loop calculation of the effective potential [12].
In general, the effective action also has divergences in

the kinetic term which are addressed in the CW scheme via
a condition which maintains the tree-level form. With this
additional condition, the Higgs mass MH is given by

M2
H ¼ 1

Z

d2V

d�2

���������¼�
¼ d2V

d�2

���������¼�
; (8)

where Zð�Þ ¼ 1 in the CW scheme. Finally, the coupling �
is determined by the spontaneous-symmetry-breaking con-
dition that the effective potential has a non-trivial mini-
mum dV

d� j�¼� ¼ 0. Contact with the standard model is

achieved by identifying the scale�with the EW scale� ¼
v ¼ 246:2 GeV. We note that although higher-loop calcu-
lations of the effective potential exist in other schemes,
there are very few corresponding calculations of Zð�Þ, so
for pragmatic purposes higher-loop calculations of the
Higgs mass are currently limited to the CW scheme. By

contrast, RG functions ~� and ~� are generally calculated
in MS-like schemes, and hence it is necessary to convert
these RG functions to the CW scheme [15]. We can thus
use the five-loop MS-scheme determinations of the
OðNÞ-symmetric �4 RG functions [14] to determine their
five-loop CW-scheme counterparts. Note that in the MS
scheme ~g1 ¼ 0, and, hence, we also have g1 ¼ 0 in the
CW scheme.
In Ref. [11] it was demonstrated that for p even, Vp

provides an upper bound on the Higgs mass MH which
slowly drops from 221 GeVat one-loop order (LL order) to
165 GeV at five-loop order (N4LL). Thus, we can exclude
radiative symmetry breaking if the upper bound drops
below the ATLAS and CMS value of 125 GeV. We thus
focus on improving the upper bound by approximating
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higher-loop terms in the RG functions which enables
higher-loop approximations to the effective potential.

Padé approximation methods, particularly when
improved with an asymptotic error correction [17,21,22],
have been successfully applied to the MS-scheme RG
functions of OðNÞ massive scalar field theory [17–19].
For example, using four-loop results as input, the Padé-
predicted and exact five loop term in the beta function
agree to better than 5% for N ¼ 4 [19].

For Padé approximations to the MS-scheme beta func-

tion ~� we write

~� ¼ ~b2�
2

�
1þ

~b3
~b2
�þ

~b4
~b2
�2 þ

~b5
~b2
�3 þ

~b6
~b2
�4

�
(9)

and apply Padé approximation methods to the bracketed
quantity. Using the methods outlined in Refs. [17,21,22],
the asymptotic-improved Padé prediction of the R5x

5 term
with known coefficients fR1; R2; R3; R4g in the series
PðxÞ ¼ 1þ R1xþ R2x

2 þ R3x
3 þ R4x

4 is given by

R5 ¼ R2
4ðR1R

3
3 � 2R3

2R4 þ R1R2R3R4Þ
R3ð2R1R

3
3 � R2

2R
2
3 � R4R

3
2Þ

: (10)

From this expression, the resulting asymptotic-improved
Padé prediction of the Oð4Þ MS six-loop beta function is
~b7 ¼ �1:07. Because we also want the seven-loop beta
function, a ½2j2� Padé approximant to PðxÞ is then used to
predict its x5 and x6 terms. The resulting prediction of the
six- and seven-loop MS scheme Oð4Þ beta function coef-

ficients are ~b7 ¼ �0:992 and ~b8 ¼ 1:96. The agreement of

the ½2j2� and asymptotic-improved predictions for ~b7 to
approximately 10% provides a validation of the ½2j2�
methodology and establishes a characteristic error for our
analysis below. Converting these MS-scheme beta function
coefficients to the CW scheme results in b7 ¼ �0:695 and
b8 ¼ 1:37.

For Padé approximations to the MS-scheme anomalous
dimensionwe follow the same procedure except there is less
information than in the beta function because the leading-
order ~g1 term in the anomalous dimension is zero. Given
knowledge of fR1; R2; R3g in the seriesPðxÞ, the asymptotic-
improved Padé prediction of R4 [18] results in the
asymptotic-improved Padé prediction of the six-loop coef-
ficient ~g6 ¼ �0:692� 10�3 and g6 ¼ �0:135� 10�3

after conversion to the CW scheme. As argued above, we
can now use ~g6 to form a ½2j2� Padé approximant to predict
the seven-loop MS coefficient ~g7 ¼ 0:961� 10�3 which
corresponds to CW-scheme value g7 ¼ �0:225� 10�4.

Equipped with Padé estimates of the RG functions up to
seven-loop order, we can solve (5) and (6) to obtain S5 and
S6, which enables the construction of the N6LL effective
potential V6. Analysis of the effective potential results in
the Higgs mass MH ¼ 150 GeV and the CW-scheme
weak-scale coupling �ðvÞ ¼ 0:308. Including 10% uncer-
tainties in the RG coefficients only gives a 0.1 GeV Higgs
mass difference which shows the method is quite robust.

Now, we develop methods to extrapolate the Higgs mass
estimates to higher-loop orders. We begin with the averag-
ing method motivated by the field-theoretical contributions
to the Higgs mass in the absence of a counterterm contri-
bution

~Mn ¼ 1

v2

d2ðVn � Kn�
4Þ

d�2

���������¼�
; (11)

where Kn ¼
P

nþ4
i¼nþ1 Ti;0�

iþ1 is the corresponding counter-

term at that order. The quantity ~Mn is shown in Fig. 1, and
as argued in Ref. [11], demonstrates that the effective
potential over-estimates the Higgs mass at even orders
and underestimates it at odd orders. Moreover, we can
imagine that at higher orders, the field theoretical contri-
butions to the Higgs mass will lie in the envelope between
the even and odd orders. Indeed, for small �, Fig. 1 already
shows close agreement between even and odd orders. It
thus seems plausible that the average of an even- and odd-
order effective potential will provide a better approxima-
tion to the full effective potential than a single-order result.
This averaging method can be justified by identifying ~Mn

as the Eq. (7) partial sum of Sn contributions that alternate
in sign as demonstrated by Fig. 1. In particular, moving
from p-loop order to pþ 1-loop order involves the addi-
tion of Sp, and the sign of this contribution sequentially

raises and lowers the curves in Fig. 1. Thus, for any fixed
value of �, we can employ Euler’s transformation for
alternating series to accelerate its convergence [23]:

X1

n¼0

ð�1Þnun ¼ u0 � u1 þ �� �� uN�1 þ
X1

s¼0

ð�1Þs
2sþ1

½�suN�

(12)

and setting s ¼ 0 as the lowest order approximation, we
obtain

X1

n¼0

ð�1Þnun � u0�u1þ����uN�1þ 1

2
uN ¼ �PN; (13)

where the partial sums PN ¼ P
N
n¼0ð�1Þnun and �PN ¼

1
2 ðPN þ PN�1Þ. In our case, the averaged effective poten-

tial �Vn can be written as �Vn ¼ 1
2 ðVn þ Vn�1Þ.

For example, the average of four-loop (N3LL) and five-
loop (N4LL) contributions to the effective potential �V4 ¼
V3=2 þ V4=2 ¼ ð�S0 þ � � � þ �4S3 þ 1

2 �
5S4 þ �K4Þ�4

shown in Fig. 1 gives the Higgs mass prediction MH ¼
153 GeV and the corresponding coupling � ¼ 0:418.
Although the averaging results in a coupling close to the
three-loop value, the mass is in close agreement with the
seven-loop Padé result. Thus, the average of the five-loop
effective potential with its lower-loop four-loop counter-
part, leads to a much better Higgs mass estimate than the
five-loop contribution alone.
The same pattern holds at lower orders as well; the

Higgs mass and coupling resulting from averaging the
two- and three-loop effective potentials is in remarkably-
close agreement with the five-loop Higgs mass and
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one-loop coupling (see Table I). Based on this pattern that
the average of the n� 1 and n-loop effective potentials
approximates the n� 2 loop coupling and nþ 2 loop
Higgs mass, we expect that the average of the six- and
seven-loop Padé approximations to the effective potential
will provide a good estimate of the nine-loop Higgs mass
prediction and the five-loop coupling. Using this method,
our nine-loop estimates are MH ¼ 141 GeV with the cor-
responding coupling �ðvÞ ¼ 0:352. We note that the agree-
ment between the five-loop coupling and the six- and
seven-loop average (see Table I) provides further confir-
mation of the pattern, and gives us confidence in the nine-
loop Higgs mass estimate.

Thus, by combining Padé estimates and the averaging
method, the seven- and nine-loop Higgs mass predictions
have been estimated. These estimates demonstrate a con-
tinued slow convergence towards a Higgs mass bounded
from above by 141 GeV. To determine whether the Higgs
mass will eventually converge to a value consistent with
the 125 GeV Higgs mass seen by ATLAS and CMS
Collaborations [1,2], we first note that the differences
between subsequent loop orders in Table I decrease in a
fashion consistent with a geometric series

Mn �MHiggs ¼ ��n; (14)

where Mn is the n-loop Higgs prediction, � has dimen-
sions of mass, and�< 1 is a dimensionless quantity which
leads to limn!1Mn ¼ MHiggs. In Fig. 2 the plot of

logðMn �MHiggsÞ shows clear linear behavior with n con-

sistent with the geometric series (14) when MHiggs ¼
125 GeV. The dependence of the �2 deviation from this
linear fit is shown as a function ofMHiggs in Fig. 3, provid-

ing an optimized valueMHiggs ¼ 124 GeV. We thus specu-

late that the radiatively generated Higgs mass ultimately
converges to a value consistent with the 125 GeVATLAS
and CMS value [1,2]. A similar geometric series pattern
exists for the Higgs self-coupling; Fig. 2 shows linear
behavior for logð�n � �HiggsÞ for the least-squares opti-

mized value �Higgs ¼ 0:23. The similarity in slope between

the mass and coupling plots in Fig. 2 is intriguing; we
speculate that this is connected to the underlying rate of
convergence of the effective potential.
The extrapolated value �Higgs is a factor of 2 smaller than

the leading logarithm result, so it is necessary to re-examine
whether the scalar field theory sector of the standard model
is still a valid approximation. Because the top-quark
Yukawa coupling is the dominant secondary effect on the
Higgs mass [10], we have calculated the leading-logarithm
(one-loop) ratio of the Higgs mass with top-quark effects
included and omitted. For the extrapolated value �Higgs ¼
0:23, the top-quark effects are less than a 5% effect at
leading-log order and hence the scalar field sector still
captures the dominant features of the standard model.
Using Padé approximation methods and an averaging

technique, we have extended the radiatively generated
Higgs mass prediction to nine-loop order. Two important
trends emerge from this result: both the Higgs mass and
CW-scheme coupling � decrease with increasing loop
order. Both the Higgs mass and self-coupling are well
described by a geometric series in the loop-order, converg-
ing to approximatelyMHiggs¼124GeV and �Higgs ¼ 0:23.

The value of the coupling provides a phenomenological
signal that distinguishes between radiative and

TABLE I. Higgs mass in GeV and self-coupling predictions at
different loop orders in both the standard (left half) and averag-
ing method (right half). The extrapolated values emerging from
the geometric series behaviour are also shown. For comparison,
the Higgs coupling �CSB in conventional symmetry breaking
corresponding to the predicted Higgs mass is also provided.

Loop � MH �CSB Average � MH �CSB

1 loop 0.534 221 0.101

3 loops 0.417 186 0.072 2,3 loop 0.514 167 0.230

5 loops 0.354 165 0.056 4,5 loop 0.418 153 0.194

7 loops 0.308 150 0.047 6,7 loop 0.352 141 0.041

Extrapolate 0.233 124 0.032

1 loop

2 loop

3 loop

4 loop

5 loop

6 loop

7 loop

4 5 average

0.1 0.2 0.3 0.4 0.5

4

2

2

4

6

8

Mn

FIG. 1 (color). The dimensionless quantity ~Mn (11) is plotted
as a function of � for the Oð4Þ scalar theory. Upper curves
represent the even NpLL (pþ 1-loop) orders (p ¼ 0, 2, 4, 6)
and the lower curves represent the odd orders (p ¼ 1, 3, 5). The
average of the four- and five-loop contributions is also shown.

Log Mn MHiggs

Log n Higgs

2 4 6 8 10
loop

4

2

2

4

FIG. 2 (color online). The quantities logðMn �MHiggsÞ and
logð�n � �HiggsÞ are plotted versus loop order n for Table I

values with MHiggs ¼ 125 GeV and �Higgs¼0:23. The lines are

a linear fit to the data points based on the geometric series (14).
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conventional EW symmetry breaking. For example, in
Table I the conventional symmetry-breaking � value cor-
responding to the predicted Higgs mass is smaller than the
radiatively generated value at all orders, implying a sig-
nificant enhancement of Higgs-Higgs scattering in radia-
tive EW symmetry breaking [7]. This trend is upheld in the
extrapolation to �Higgs ¼ 0:23 and a 125 GeV Higgs mass.

It seems feasible for the Higgs self-coupling to be mea-
sured by the LHC [24,25]; an enhancement of the coupling
compared to conventional symmetry breaking could be
evidence for the radiative scenario.

However, the Goldstone-boson replacement theorem
[26] leads to identical results for the Higgs decay processes
H ! Wþ

L W
�
L , H ! ZLZL in conventional and radiative

symmetry breaking independent of the extrapolated Higgs
coupling, and similar equivalences are found for the scat-
tering processes Wþ

L W
�
L ! Wþ

L W
�
L , Wþ

L W
�
L ! ZLZL

[20]. This implies that these Higgs decays and gauge boson
scattering processes are unable to distinguish between
radiative and conventional EW symmetry breaking. By
contrast, the processes Wþ

L W
þ
L ! HH, ZLZL ! HH are

enhanced in radiative EW symmetry breaking independent
of the extrapolated Higgs coupling. For example, the seven-
loop Padé prediction leads to a threefold enhancement
comparable to the lower-loop analysis of Ref. [20].

In summary, we have combined Padé approximation
methods with averaging techniques to extend Higgs mass
predictions in radiative EW symmetry breaking to the nine-
loop estimate MH ¼ 141 GeV for the upper bound on the
Higgs mass. Evidence of geometric-series convergence of
the Higgs mass to 125 GeV suggests that radiative EW
symmetry breaking is a viable mechanism for the ATLAS
and CMS observation of a Higgs boson. Similar evidence
of geometric series convergence for the Higgs self-
coupling leads to the corresponding limiting value of the
radiatively generated Higgs coupling �Higgs ¼ 0:23, a

value significantly larger than its conventional symmetry-
breaking counterpart. This implies that the processes
HH ! HH, Wþ

L W
þ
L ! HH, ZLZL ! HH are enhanced,

so discrepancies between experiment and conventional
symmetry-breaking predictions may provide signals of
radiative symmetry breaking.
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