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The acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island

magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which

produce adiabatic compression of the particles. The model takes into account the statistical fluctuations in

the compression rate experienced by the particles during their transport in the acceleration region. The

evolution of the particle distribution function is described as a simultaneous first- and second-order Fermi

acceleration process. While the efficiency of the first-order process is controlled by the average rate of

compression, the second-order process involves the variance in the compression rate. Moreover, the

acceleration efficiency associated with the second-order process involves both the Eulerian properties of

the compression field and the Lagrangian properties of the particles. The stochastic contribution to the

acceleration is nonresonant and can dominate the systematic part in the case of a large variance in the

compression rate. The model addresses the role of the second-order process, how the latter can be related

to the large-scale turbulent transport of particles, and explains some features of the numerical simulations

of particle acceleration by multi-island contraction during magnetic reconnection.
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Introduction.—The production of nonthermal particles
in magnetized plasmas is a ubiquitous complex phenome-
non which is believed to also involve magnetic reconnec-
tion. Magnetic reconnection is the process that controls the
conversion of magnetic energy into kinetic energy [1]; it is
the driver of impulsive phenomena such as solar flares,
substorms in the Earth’s magnetosphere, and disruptions in
laboratory fusion devices. The relation between magnetic
reconnection and particle acceleration has been exten-
sively discussed in the terrestrial magnetosphere based on
in situ observations [2–4]. Moreover, x-ray observations
and studies of the energy budget during solar flares indicate
that a significant fraction of the magnetic energy released
in a flare is carried by the accelerated 10–100 keV non-
thermal electrons [5]. However, how particles can be accel-
erated in large numbers to high energies as the magnetic
field lines reconnect remains an outstanding problem.

Numerical particle-in-cell (PIC) simulations aiming to
address the problem of particle acceleration during mag-
netic reconnection in a self-consistent manner, have con-
firmed that particles are efficiently accelerated in the
vicinity of the X line by reconnection electric fields [6,7].
However, an important limitation of X-type acceleration
mechanisms is that they hardly explain alone the large
number of accelerated particles, in particular during a solar
flare, because the volume occupied by a current sheet where
the strong electric field capable of particle acceleration is
present, is quite small.

Hence, intensive efforts have been made to understand
the role played by the region inside the separatrices for
particle acceleration, leaning toward the idea of O-type
acceleration mechanisms which take advantage of the

closed geometry of the field within magnetic islands.
Drake et al. [8] have developed a model of particle
acceleration which is based on the dynamical motion of
the islands. They show that particles trapped in the con-
tracting magnetic field of the islands are adiabatically
compressed and therefore can be efficiently accelerated
through a first-order Fermi process. In addition, many
studies have revealed the importance of magnetohydro-
dynamic turbulence [9–11] and plasmoid dynamics
[12,13] with regards to particle acceleration in a reconnect-
ing plasma. Current sheets are naturally prone to tearing
and their fragmentation leads to the formation of magnetic
islands having a complex multiscale and intermittent
dynamical behavior [14,15]. Our goal in this Letter is to
study the effect on particle acceleration of the ensemble of
contracting islands and develop a simple model of particle
acceleration during turbulent magnetic reconnection.
When a magnetic island changes its length L at the

velocity V ¼ dL=dt, particles that are trapped within the
island change their speed v according to dv=dt ¼
�ð�V=LÞv � Wv. This relation, derived in Ref. [8], is a
consequence of the conservation of the longitudinal action
for particles trapped within an island and the coefficient �
represents the relative magnitude of the reconnecting
magnetic field; i.e., � ¼ ð�B=B0Þ2. As a result, magnetic
islands that are contracting at a speed of the order of the
Alfvén speed V � VA accelerate the trapped particles
through adiabatic compression, provided v � VA. The
acceleration rate associated with this first-order Fermi
process is given by �Va=L0, where L0 is the typical length
of the islands. If, on the contrary the islands are expanding,
then first-order adiabatic deceleration of the particles
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will result at the same energy independent rate. When
contraction is magnetically favorable and when the
energy gained from the magnetic field by the particles is
balanced with energy losses, including transport losses
and/or backreaction of the accelerated particles, power-
law distribution in particle energy may be obtained, which
is determined by standard techniques, as was originally
done in Ref. [8].

In the case of a first-order Fermi process, the rate of
energy gained by the particles is proportional to the mean
compression hWi, where the brackets hi denote an average
over the ensemble of islands in the system, possibly
weighted by the relative number of islands that are under-
going contraction [8,16]. The mere existence of this aver-
age, or the range of possible contraction rates, suggests that
we consider also the effect of the finite variance in the
adiabatic compression experienced by the particles in the
sea of islands. Indeed, the contraction rate changes in time
due to the fire hose condition [16], so an assembly of
contracting islands will have nonzero variance. Further,
PIC simulations [12] emphasize the bouncing motion of
merged islands, so that a contracting motion of an island is
followed by an expanding motion.

For an ensemble of multiple contracting islands,
the presence of the nonzero average hWi and nonzero
hðW � hWiÞ2i leads to both first and second order accel-
erations. The mean controls the first-order Fermi accelera-
tion and additional statistical acceleration occurs at a rate
proportional to the variance of the compression, also when
the mean compression rate hWi is nonzero. A continuity
equation can be written for the omnidirectional particle
distribution function Fðp; tÞ ¼ 4�p2fðp; tÞ [8,16],

@Fðp; tÞ
@t

þ @

@p

��
dp

dt

�
Fðp; tÞ

�
¼ 0; (1)

where p is the particle momentum with the time rate of
change in momentum given by

dp

dt
¼ ��V

L
p � Wp: (2)

In Refs. [8,16], a term modeling the effect of escape
of particles out of the acceleration region is also included
in Eq. (1).

Let us consider the case where the compression rate is
small and assume first that it is a function of time only with
zero average, i.e., the bouncing motion of the islands

hWðtÞi ¼ 0; (3)

and its correlation function decays exponentially,

CðtÞ ¼ hW2ðtÞi expð�t=�cÞ: (4)

In these cases, even when on average the islands are
neither contracting nor expanding, i.e., hWi ¼ 0, there is
a stochastic acceleration effect that remains operative.
Although the particles do not experience any systematic

change in their energy, the average particle energy could
still grow with the acceleration efficiency associated with a
second-order Fermi process is proportional to the variance
of the compression hW2i. Therefore, we obtain that the
mean omnidirectional distribution function F0ðp; tÞ obeys
the diffusion equation

@F0ðp; tÞ
@t

¼ D
@

@p
p

@

@p
pF0ðp; tÞ; (5)

with the diffusion coefficient in momentum space given by

D ¼
Z 1

0
dtCðtÞ ¼ �chW2ðtÞi: (6)

The mean distribution function F0ðp; tÞ solution of Eq. (5)
is the normal distribution with respect to the variable
u ¼ lnðp=p0Þ. Indeed, the particle dynamics is described
by the Langevin equation du=dt ¼ WðtÞ with hWðtÞi ¼ 0.
Therefore, F0ðu; tÞ satisfies the standard diffusion equation

@F0ðu; tÞ
@t

¼ D
@2F0ðu; tÞ

@u2
; (7)

which also confirms that fluctuations in the compression
rate are responsible for the growth of the variance in the
momentum distribution function.
An account for the effect on the stochastic acceleration

of the spatial transport of particles in the pulsation field of
the islands may be given on the following basis. Let us
shrink the volume of each island into a point, this point
being characterized by its compression Wðx; tÞ, with x
being the position of the center of the islands. Moreover,
we envisage a situation where the large scale spatial trans-
port of particles in the volume filled by the islands is
turbulent and diffusive. Therefore, the particle dynamics
is modeled by the following Langevin equations:

dx

dt
¼ �ðtÞ; du

dt
¼ Wðx; tÞ; (8)

with h�ðtÞi ¼ 0 and h�iðtÞ�jðt0Þi ¼ 2�ij�T�ðt� t0Þ,
hWðx; tÞi ¼ 0 and hWð0; 0ÞWðx; tÞi ¼ Cðx; tÞ, �T is the
spatial diffusion coefficient. Here, Cðx; tÞ is the Eulerian
correlation function associated with the compression or
expansion field Wðx; tÞ of the islands, which is supposed
to be homogeneous and stationary. The Eulerian correla-
tion function depends on three parameters that characterize
the statistics of the (isotropic) compression or expansion
field—the variance hW2ðx; tÞi ¼ Cð0; 0Þ, the correlation
time �c, which is the decay time of the Eulerian correlation,
and the correlation length �c, which is the decay length. So
the particles have the probability to stay within the island
or escape. As noted [8], the gyration radius of the particle
increases near the separatrix, which in turn increases the
probability of a particle to escape the island. The Langevin
equations (8) are doubly stochastic in the sense that both
the position xðtÞ of the particles and the compression field
Wðx; tÞ are stochastic processes.
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With the spatiotemporal statistics of the compression
being specified via Cðx; tÞ, the problem is to calculate the
diffusion coefficient in momentum space (when the latter
exists) and to determine the form of the distribution func-
tion. The diffusion coefficient D is related to the time
integral of the Lagrangian correlation function [17], viz.

D ¼
Z 1

0
dtCLðtÞ; (9)

where the Lagrangian correlation function CLðtÞ is
defined via

CLðtÞ ¼ hWð0; 0ÞWðxðtÞ; tÞi; (10)

where xðtÞ is a solution of Eqs. (8). The exact result (9) is a
simple consequence of the definition D ¼ ð1=2Þdhu2i=dt,
combined with the second equation in (8). Indeed,
hu2i ¼ R

t
0 dt

0 Rt
0 dt

00hWðt0ÞWðt00Þi ¼ 2
R
t
0 dt

0CLðt0Þðt � t0Þ
and letting t ! 1 (when the integral converges) gives
Eq. (9). It also follows from Eq. (9) that the diffusion
coefficient in momentum-space can be expressed as

D ¼ �LhW2ðx; tÞi; (11)

where �L is the Lagrangian correlation time, i.e., the
correlation time of the compression and expansion field
which is experienced by the particles along their trajectory.
The problem remains to connect the Lagrangian and
Eulerian statistics; i.e., to determine the functional depen-
dence of �L with �c and �c. To this purpose, let us write the
Lagrangian correlation function (10) in the equivalent form

CLðtÞ ¼
Z

dxhWð0; 0ÞWðx; tÞ�ðx� xðtÞÞi: (12)

A relation between the Lagrangian correlation CLðtÞ and
the Eulerian correlation Cðx; tÞ is obtained by invoking
a procedure due to Corrsin [18,19] in which xðtÞ is
replaced by its statistical average, so that we may replace
�ðx� xðtÞÞ in Eq. (12) by �ðx� xðtÞÞ. This leads to the
factorization CLðtÞ ¼

R
dxhWð0; 0ÞWðx; tÞih�ðx� xðtÞÞi.

Hence, an expression for the diffusion coefficient in
momentum space is found and given by

D ¼
Z 1

0
dt

Z
dxCðx; tÞPðx; tÞ; (13)

where Pðx; tÞ � h�ðx� xðtÞÞi is the conditional probabil-
ity for a particle to be under the influence of a magnetic
island located at the position x at time t provided that this
particle was at x ¼ 0 at t ¼ 0. Equation (13) shows that D
is the integral of the product of two quantities: Cðx; tÞ, the
Eulerian correlation function, which characterizes the sta-
tistical properties of the compression field Wðx; tÞ, and the
probability function Pðx; tÞ, describing the spatial transport
of particles in the acceleration region. Here, Pðx; tÞ is the
solution of a standard diffusion equation with diffusion
constant �T , i.e.,

Pðx; tÞ ¼ 1

ð4��TtÞ3=2
expð�jxj2=4�TtÞ; (14)

but the procedure can be generalized to more complex
transport models.
Let us further take the illustrative example of an iso-

tropic correlation function of the form given by

Cðx; tÞ ¼ hW2ðx; tÞi expð�jxj2=�2
c � t=�cÞ: (15)

From Eq. (13), we obtain that

D¼hW2ðx;tÞi
Z 1

0
dtexpð�t=�cÞ

�
1þ4�T�c

�2
c

��3=2
: (16)

Therefore, in the weak spatial diffusion limit �T �
�2
c=4�c, the momentum diffusion coefficient given by

D� �chW2ðx; tÞi: (17)

This is the case already given by Eq. (6), corresponding to
Eq. (11) with �L � �c. However, in the opposite strong
spatial diffusion limit, where �T � �2

c=4�c, then

D� �2
c

2�T

hW2ðx; tÞi; (18)

corresponding to the Lagrangian correlation time being
of the order of the spatial transport time scale, i.e.,
�L � �2

c=�T . In this strong spatial diffusion limit, the
stochastic acceleration efficiency is governed both by
the Eulerian properties of the compression field and the
Lagrangian properties of the particles.
Let us notice that the diffusion coefficient in

momentum space may also be expressed as D ¼RR
dkd!Sðk; !Þ�Tk

2=½!2 þ ð�Tk
2Þ2�, where Sðk; !Þ is

the spectrum of Wðx; tÞ, i.e., the Fourier transform of the
correlation function Cðx; tÞ. It can be clearly seen from this
expression for D that the integral may diverge for scale-
free power-law spectra such as Sðk;!Þ / k�q�ð!Þ. This is
the signal that the turbulent acceleration process cannot be
described as a standard diffusion in u space as in Eq. (7).
This situation has been dubbed Fermi acceleration of
fractional order in Refs. [20,21]. Here, we focus on the
second-order process with D finite.
The statistical effect discussed above can be felt also in

addition to the systematic energy change. Indeed, when
both the mean and the variance of the compression are
finite, the first and second-order Fermi processes operate
together. In this case, F0ðu; tÞ obeys an advection-diffusion
equation in velocity space,

@F0ðu; tÞ
@t

þ a1
@

@u
F0ðu; tÞ ¼ a2

@2

@u2
F0ðu; tÞ; (19)

where u ¼ lnðp=p0Þ and where the coefficients of system-
atic and stochastic acceleration are given by

a1¼hWðx;tÞi; a2¼�Lh½Wðx; tÞ�hWðx;tÞi�2i; (20)
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respectively. When the islands contract on average, the
distribution function F0ðu; tÞ shifts toward large u at a
rate given by a1 while the variance of F0ðu; tÞ grows at a
rate given by a2 and the stochastic component to the
acceleration process dominates the systematic part when
a2 � a1. The time-dependent solution F0ðu; tÞ of the
advection-diffusion equation (19) is the normal distribu-
tion in the variable u� a1t.

Although the time-dependent solution is not a power
law, but only asymptotically at t ! 1, the characteristic
solutions and spectral indices

� d lnF0ðp; tÞ
d lnp

¼ 1þ lnp=p0

Dt
; (21)

are found for a few values ofDt and are presented in Fig. 1.
The values appear to be similar to those obtained in
numerical simulations, e.g., Refs. [12,16] and closer to
the observed values in solar flares [5] than, for example,
in Ref. [11].

In summary, we show that both the first- and second-
order Fermi acceleration process can operate together to
increase the particle energy when the acceleration region
consists of an ensemble of contracting islands. In the case
when islands are both contracting and expanding with zero

mean effect, only the second-order acceleration process
operates. However, even when contraction is dominant, the
second order effect can be substantial. The stochastic
component to the acceleration corresponds to a nonreso-
nant mechanism according to the classification scheme
established in Ref. [21]. It involves the turbulent transport
properties of the particles in the acceleration region and
becomes more efficient for higher levels of variance in the
compression rate.
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