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The relaxation of a dissipative system to its equilibrium state often shows a multiexponential pattern with

relaxation rates, which are typically considered to be independent of the initial condition. The rates follow

from the spectrum of a Hermitian operator obtained by a similarity transformation of the initial Fokker-

Planck operator. However, some initial conditions are mapped by this similarity transformation to functions

which grow at infinity. These cannot be expanded in terms of the eigenfunctions of aHermitian operator, and

show different relaxation patterns. Considering the exactly solvable examples of Gaussian and generalized

Lévy Ornstein-Uhlenbeck processes (OUPs) we show that the relaxation rates belong to the Hermitian

spectrumonly if the initial condition belongs to the domain of attraction of the stable distribution defining the

noise. While for an ordinary OUP initial conditions leading to nonspectral relaxation can be considered

exotic, for generalized OUPs driven by Lévy noise, such initial conditions are the rule.
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The relaxation of a physical system, prepared in a non-
equilibrium state, to the equilibrium often shows a multi-
exponential pattern with decrements of single exponentials
defining the relaxation rates. These rates are usually con-
sidered an intrinsic property of the system, independent of
initial conditions and they follow from the spectrum of a
Hermitian Hamiltonian operator obtained by a similarity
transformation of the Fokker-Planck (FP) operator govern-
ing the evolution of the probability density. Methods of
spectral analysis are central in physics, in particular, in
quantum mechanics and in the theory of oscillations, and
are universally employed to the solution of linear problems.
Thus, the discussion of the spectrum of the FP operator is
often the first step in the solution of the FP equation and the
investigation of its relaxation properties [1–3].

As we proceed to show, this first step might not deliver a
complete picture. Initial distributions, which are not
mapped to square integrable functions by the similarity
transformation, cannot be expanded in terms of the eigen-
functions of the corresponding Hamiltonian operator and
will therefore relax at rates that may not be given by the
Hermitian spectrum. It is in this sense that we use the term
nonspectral relaxation. The smallest nonspectral rate can
be smaller than the smallest spectral relaxation rate and
thus dominate the relaxation behavior over the whole
time range.

Although the effect of nonspectral relaxation can be
observed under quite general conditions, in this Letter we
concentrate on the simplest, exactly solvable examples of
Ornstein-Uhlenbeck processes (OUPs) describing the coor-
dinate of an overdamped particle in a harmonic potential
driven by a white noise. Because the OUP generally
approximates random processes in the vicinity of a stable
stationary point, it is a very important analytical tool in

many fields of research, from statistical physics [3–5] to
theoretical neuroscience [6], ecology [7], and economics
[8]. Since the assumption of Gaussian fluctuations is vio-
lated in many nonequilibrium systems, in recent years the
attention has been shifted to non-Gaussian statistics arising
from Lévy noise [8,9]. In the present Letter, we consider
both, the standard OUP driven by a Gaussian noise and a
generalized OUP driven by symmetric, white Lévy noise.
Even for the Gaussian OUP, the nonspectral relaxation of
broad initial distributions has, surprisingly, never been
considered in the textbooks and the applied mathematical
literature [1–3]. For the Lévy OUP, the similarity trans-
formation to the quantum harmonic oscillator Hamiltonian,
which we present here, allows us to define a Hermitian
spectrum for the corresponding fractional FP operator and
hence to distinguish between spectral and nonspectral re-
laxation in this generalized case. The effect of nonspectral
relaxation found in this Letter is of different nature from
the nonspectral relaxation in the presence of multiplicative
noise described in Ref. [10] and from slow, nonexponential
relaxation specific to subdiffusive processes [11].
The time-dependent probability density pðx; tÞ for a

Gaussian diffusion process in a one dimensional potential
UðxÞ solves a FP equation [1] of the form

@

@t
pðx; tÞ ¼ @

@x
½U0ðxÞpðx; tÞ� þ @2

@x2
pðx; tÞ ¼ L̂pðx; tÞ; (1)

where the time has been scaled to units of the inverse diffu-
sion constant. The time independent, stationary solution is

given aspstðxÞ ¼ 1
Z e

�UðxÞ whereZ is determined by normal-

ization. The time evolution of the transformed function

c ðx; tÞ ¼ pstðxÞ�ð1=2Þpðx; tÞ ¼ 1ffiffiffiffi
Z

p eUðxÞ=2pðx; tÞ (2)
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is given by a Hermitian operator Ĥ

� @

@t
c ðx; tÞ ¼ Ĥc ðx; tÞ ¼

�
VðxÞ � @2

@x2

�
c ðxÞ; (3)

withVðxÞ ¼ ½14U0ðxÞ2 � 1
2U

00ðxÞ� [1]. Equation (2) defines a
similarity transformation between L̂ and �Ĥ and hence a

transformation c ¼ Ŝp from the space of the solutions of the
FP equation to the space of the solutions of the Schrödinger-

like equation (3). The eigenvalues�� of the Hamiltonian Ĥ
are real valued and the corresponding eigenfunctions c �ðxÞ
form a basis in the Hilbert space of square integrable func-
tions. A distribution pðx; tÞ that can be expanded into the

transformed eigenfunctions ’�ðxÞ ¼ c �ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
pstðxÞ

p
will

relax at rates that are given by the eigenvalue spectrum of

Ĥ. We call this a spectral relaxation pattern. However, from
Eq. (2), it follows that only those distributions pðx; tÞ, that
decay sufficiently faster at infinity than 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
pstðxÞ

p
grows,

transform into square integrable functions c ðx; tÞ [2]. IfUðxÞ
goes faster to infinity than logarithmically,pðx; tÞmust decay
exponentially. In this case, the existence of all moments is a
necessary and, indeed, a sufficient condition for spectral
relaxation. Other fully legitimate probability density func-
tions, for instance, a Cauchy distributionpðx; t0Þ ¼ ð1=�Þ�
ðx2 þ 1Þ�1, as an initial distribution for the FP equation, are
mapped to functions that grow rapidly at infinity and cannot
be expanded into the square integrable eigenfunctions of the
Hamiltonian. The relaxation for such initial conditions does
not have to be spectral. Since one is usually interested in the
Green’s function of the system, which is the conditional
probability density pðx; tþ �jx0; tÞ, square integrability of
the transformed initial condition is always assumed and other
cases have never been considered because they seem exotic
or even unphysical. For theOUPwith a linear restoring force,
given by a mobility coefficient �, the potentials are UðxÞ ¼
1
2�x

2 and VðxÞ ¼ 1
4�

2x2 � 1
2�. The spectral relaxation rates

are given by the energy eigenvalues ��n ¼ n�, n 2 N
of the quantum harmonic oscillator with ground state
energy zero.

Let us proceed to show that the fractional FP operator of
the Lévy OUP [12,13] can also be mapped to the
Hamiltonian of the quantum harmonic oscillator. The FP
equation for the probability distribution of a Lévy flight in
a harmonic potential reads

@p

@t
¼ @

@x
½�xpðx; tÞ� þ ��=2pðx; tÞ ¼ L̂

�
� pðx; tÞ; (4)

with the parameter 0<� � 2 in the fractional derivative
corresponding to the index of the stable law defining the
Lévy noise. The fractional Laplacian is defined by its

action in Fourier space: ��=2pðxÞ ! �jkj�pðkÞ, where it

is diagonal. We write L̂
�
� for the corresponding fractional

FP operator depending on the noise parameter � and the
mobility �. Equation (1) with UðxÞ ¼ 1

2�x
2 is a special

case of Eq. (4) with � ¼ 2. In Fourier space, Eq. (4) is an

evolution equation for the characteristic function pðk; tÞ ¼
Ep½eikx�. There it has the form

@

@t
pðk; tÞ ¼ ��k

@

@k
pðk; tÞ � jkj�pðk; tÞ: (5)

By simply rescaling the argument with a diagonal

transformation T̂� with integral kernel T�ð�; kÞ ¼
�ðj�j1=�sgnð�Þ � kÞ,

½T̂�p�ð�; tÞ ¼
Z

T�ð�; kÞpðk; tÞdk ¼ pðj�j1=�sgnð�Þ; tÞ;
(6)

and using the chain rule k@k½T̂�p� ¼ ��@�½T̂�p�, we find
that, with � ¼ �=2, the transformed functions follow a
nonfractional FP equation:

d

dt
½T̂�=2p� ¼ ��

�

2
�

@

@�
½T̂�=2p� þ @2

@�2
½T̂�=2p�

¼ L̂2
��
2
½T̂�=2p�: (7)

For any�> 0, the transformation is defined everywhere; it

preserves the value pðk ¼ 0Þ ¼ ½T̂�p�ð� ¼ 0Þ, i.e., the

normalization in coordinate space, and it has T̂�1
� ¼ T̂1=�

as the inverse. Indeed, it defines the similarity transforma-

tion T̂�=2L̂
�
� T̂

�1
�=2 ¼ L̂2

��=2 of the fractional FP operator L̂�
�

to that of the nonfractional OUP L̂2
��=2 with the coefficient

of a restoring force depending on the noise parameter�. In

coordinate space, the transformation T̂� is an integral
transform with the kernel

T�ð	; xÞ ¼ 1

2�

Z 1

�1
ei�	�ij�j1=�sgnð�Þxd�: (8)

Thus, applying the transformations Ŝ and T̂�=2 in

sequence, one can transform the fractional operator L̂
�
� to

the Hamiltonian of the quantum harmonic oscillator with
the harmonic eigenvalue spectrum ��n ¼ n� �

2 .

The spectrum of a Hermitian operator and its eigenfunc-
tions are determined by the properties of the Hilbert space
it is operating on. In the case of square integrable func-
tions, there are selection rules that constrict the possible
eigenvalues, and the corresponding eigenfunctions form
a complete basis. Given the similarity transformation
between the FP operators for the one dimensional
Gaussian diffusion process in any potential or the general-
ized Lévy OUP and a quantum mechanical Hamiltonian, it
is tempting to use the same selection rules in order to also
resolve the identity in the space L1 of integrable solutions
of the initial FP equation. But one has to be aware that this
is only possible in a subspace of L1. However, both the
solution of the eigenvalue problem and the complete time-
dependent solution of the fractional Fokker-Planck
equation for the Lévy OUP can be found analytically.
We therefore use this analytically tractable example as a
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showcase for nonspectral relaxation, which could other-
wise not be explained by Hermitian spectral theory.

Since we only consider real valued functions in coordi-
nate space, we can restrict the eigenfunctions ’�ðkÞ of the
FP operator L̂

�
� in Fourier space to those for which

’�ð�kÞ ¼ ’�ðkÞ� holds. The eigenvalue problem L̂�
� ’� ¼

�’� is solved via separation of variables by any � 2 R,
� � 0, and a�; b� 2 R as

’�ðkÞ ¼ ½a� þ ib�sgnðkÞ�jkj�ð�=�Þe�ð1=��Þjkj�: (9)

A nonzero coefficient a� means that the eigenfunction in
coordinate space has a nonzero even part and a nonzero
b� contributes to the odd part of ’�ðxÞ. For the sym-
metric Lévy flight in a symmetric potential, the stationary
solution must be even, and we find pstðkÞ ¼ ’0ðkÞ ¼
expð� 1

�� jkj�Þ and thus

’�ðkÞ ¼ ½a� þ ib�sgnðkÞ�jkj�ð�=�ÞpstðkÞ: (10)

The characteristic function pðk; tþ �Þ at time tþ � is the
unique solution of the fractional FP equation (5) with a
given initial characteristic function pðk; tÞ ¼ p0ðkÞ at time
t. It is found by the method of characteristics and yields

pðk; tþ �Þ ¼ p0ðke���Þ
pstðke���ÞpstðkÞ: (11)

Comparing Eqs. (10) and (11) we see that pðk; tþ �Þ has
an expansion into the eigenfunctions of L̂

�
� if the ratio

p0=pst can be expanded as

p0ðke���Þ
pstðke���Þ ¼ X

�

½a� þ ib�sgnðkÞ�jkj�ð�=�Þe��: (12)

In more general cases, the sum may be replaced by an
integral with respect to an appropriate measure over the
nonpositive real numbers. Note that both the initial
distribution and the stationary distribution determine the
relaxation rates to the equilibrium. Two-point correlation
functions of observables with finite expectation and variance
at equilibrium require the conditional probability distribu-
tion pðx; tþ �jx0; tÞ, which is the solution of the FP equa-
tion with a delta distribution p0ðxÞ ¼ �ðx� x0Þ at an initial
time t. The asymptotic relaxation rate of these correlation
functions can be different from the relaxation rates of proba-
bility densities with other initial distributions.

It is beyond the scope of this Letter to study the
conditions under which such an expansion exists. Instead,
we show an example for which the expansion into an
absolutely convergent series is known, and where the
contributing eigenvalues � are not identical with the har-
monic spectrum �n ¼ �n� �

2 , n 2 N. Let us consider a

Lévy stable distribution of index � centered around a
point x0, which has the characteristic function p0ðkÞ ¼
expðikx0 � 
0jkj�Þ. The fraction (12) has the absolutely
convergent series expansion

p0ðke���Þ
pstðke���Þ ¼ X1

l;m;n¼0

clmnjkj�ð�lmn=�Þe�lmn�; (13)

with

clmn ¼ 1

l!m!n!
ðix0sgnðkÞÞlð�
0Þm

�
1

��

�
n
; (14)

and relaxation rates

�lmn ¼ ��ðlþm�þ n�Þ; l; m; n 2 N: (15)

Note that odd eigenfunctions occur in the expansion only
for odd l and asymmetric initial conditions x0 � 0, and the
smallest eigenvalue of an odd eigenfunction is simply
given by the deterministic exponential relaxation of the
mean to its stationary value zero at rate �, independently of
the noise parameter �. Nonspectral relaxation rates are
observed whenever the initial distribution does not belong
to the domain of attraction of the stationary distribution (as
a stable law), i.e., for � � �, or�< 2 and x0 � 0. A delta
distribution at the origin, i.e., x0 ¼ 0 and 
0 ¼ 0, can be
expanded into the even eigenfunctions corresponding to
the harmonic eigenvalues �2n ¼ �n�� because this spe-
cial case belongs to the domain of attraction of all stable
laws. The corresponding expansion was found in Ref. [13],
which could mistakenly be interpreted as a hint that the
complete eigenvalue spectrum of the FP operator for the
Lévy OUP is, in fact, harmonic.
Given the time-dependent solution (11) of the FP

equation, in order to demonstrate nonspectral relaxation,
one can look at the relaxation of the expected values of
appropriate observables to their stationary values. Instead,
here we use the L2 distances

�2þ ¼
Z 1

�1
ðpþðx; �Þ � pstðxÞÞ2dx

¼ 1

2�

Z 1

�1
ðpþðk; �Þ � pstðkÞÞ2dk;

�2� ¼
Z 1

�1
p�ðx; �Þ2dx ¼ 1

2�

Z 1

�1
jp�ðk; �Þj2dk; (16)

which are the square norms of the difference between the
even and the odd parts of the time-dependent probability
densities pðx; �Þ ¼ pþðx; �Þ þ p�ðx; �Þ and the corre-
sponding parts of the stationary density pstðxÞ ¼ pþ

st ðxÞ,
which has no odd part. The relaxation rates of these L2

distances assume twice the value of the eigenvalues in the
expansion (12) of p0=pst. As a particularly striking ex-
ample, in Fig. 1, we plot the L2 distances for the case of the
Gaussian OUP (� ¼ 2) with a smoothly tempered, Lévy
stable initial distribution [14,15] shifted to a point x0 � 0.
The characteristic function for the jump size distribution of
the truncated Lévy flight with an exponential cutoff was
found in Ref. [15] and for � � 1 is given by

p0ðkÞ ¼ exp

�
ikx0 � 
0

Re½ð�þ ijkjÞ�� � ��

cosð��
2Þ

�
: (17)
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Since for � � 0 all derivatives at k ¼ 0, and hence all
moments exist, we expect spectral relaxation at the asymp-
totic rates �2�1 ¼ 2� for the odd L2 distance �2�, and
�2�2 ¼ 4� for the even L2 distance �2þ. In Fig. 1 we
observe that �2� relaxes at the spectral rate �2�1 ¼ 2�
independently of �. On the other hand, the decay of �2þ,
which is expected to be faster than its odd counterpart, is
delayed during a transient that depends on � and may be
considerably slower than 4�, depending on the index � of
the initial distribution. In fact, the transient decay rate is
given by twice the smallest eigenvalue � ¼ �� used in the
expansion of the �-stable law approximated by the initial
distribution. For very small �, before entering the asymp-
totic regime the even L2 distance �2þ can become so small
that in experiments the crossover may not be observable at
all. While nonspectral relaxation is a transient phenome-
non in the Gaussian OUP for broad �-stable initial distri-
butions, the eigenvalues �ln ¼ ��ðlþ n�Þ, l, n 2 N,
used in the expansion of the conditional probability
density, with a delta distribution as an initial condition,
are nonspectral for any � � 2, i.e., for a generalized
Lévy OUP.

In conclusion, we have shown that the spectrum of the
Hermitian counterpart of a Fokker-Planck operator corre-
sponding to a Gaussian diffusion process in a potential only
determines the time evolution of initial probability den-
sities possessing all moments. Even then, broad initial
distributions may relax slower than expected from the
Hermitian eigenvalue spectrum during a possibly long
transient. This effect is a quite general property of relaxa-
tion from nonequilibrium initial conditions and must be
taken into account in the interpretation of data in nonequi-
librium systems. Furthermore, we have shown that the
fractional Fokker-Planck operator for a Lévy flight in a
harmonic potential is, by similarity transformation,
related to the Hamiltonian of a quantum harmonic oscil-
lator. However, in this case, even a � distribution, which
is not located at the origin, cannot be expanded into
the transformed eigenfunctions of that Hamiltonian.
Experimentally accessible quantities such as transition
probabilities and autocorrelation functions of observables
possessing second moments will therefore not relax at
harmonic rates. While Hermitian operator spectral theory
is a powerful tool to analyze a system, it is important to
understand the limitations in its theoretical and experimen-
tal applications.
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FIG. 1 (color online). Semilogarithmic plot of the L2 distances
�2þ and �2� between, respectively, the even and odd parts of the
time-dependent and the stationary probability density, in the case
of the OUP with Gaussian white noise (� ¼ 1, � ¼ 2) and a
shifted, tempered �-stable initial distribution [Eq. (17), 
0 ¼ 1,
� ¼ 2=3, x0 ¼ 1]. The asymptotic relaxation rate of the square
distance of the odd part (thin solid, blue line) is�2�1 ¼ 2� ¼ 2,
independent of the cutoff parameter �. The square distance of
the even part displays a crossover from slow, nonspectral decay
at a rate 2�¼4=3 to spectral relaxation at rate�2�2 ¼ 2� ¼ 4.
The transient is longer for smaller values of �, i.e., broader
distributions. Here we have plotted �2þ for � ¼ 0, 10�6,10�4,
and 10�2 (bold, solid lines). Using a Lévy stable distribution as
an initial condition, i.e., � ¼ 0, nonspectral relaxation of �2þ is
observed at all times. The dashed lines are exponential functions
1
2 expð��Þ with � ¼ �4, �2, and �4=3, drawn for comparison.

The L2 distances were calculated according to Eqs. (11), (16),
and (17) by numerical quadrature in Fourier space.
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