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Dimension witnesses allow one to test the dimension of an unknown physical system in a device-

independent manner, that is, without placing assumptions about the functioning of the devices used in the

experiment. Here we present simple and general dimension witnesses for quantum systems of arbitrary

Hilbert space dimension. Our approach is deeply connected to the problem of quantum state discrimi-

nation, hence establishing a strong link between these two research topics. Finally, our dimension

witnesses can distinguish between classical and quantum systems of the same dimension, making them

potentially useful for quantum information processing.
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Recently, the problem of testing the dimension of an
unknown physical system has attracted quite some atten-
tion. Here dimension represents, loosely speaking, the
number of degrees of freedom of the system. For quantum
systems this corresponds to the Hilbert space dimension.
The main point of this line of research is to assess the
dimension of an unknown physical system in a device-
independent manner, that is, from measurement data alone,
without any a priori assumption about the devices used
in the experiment.

This is in contrast with the more usual approach in
physics, in which, when constructing a theoretical model
aiming at explaining some experimental data, the dimen-
sion of the system is a parameter that is defined a priori.
For instance, when describing quantum systems, one gen-
erally starts by fixing the Hilbert space dimension, given
reasonable assumptions about the nature of the system and
its dynamics. Then the model may or may not reproduce
the experimental data. If the model fits the data, one can
make a statement about the system’s dimension. If the
model does however not work, nothing can be said since,
in principle, there could be a different model using the
same dimension that could explain the data. Obviously
testing all possible models with a fixed dimension is im-
possible; hence, a better approach is required in order to
determine the minimal dimension of the system compat-
ible with some data.

The concept of a dimension witness was recently intro-
duced to address this problem. First discussed in the con-
text of Bell inequalities [1–5], dimension witnesses were
also derived in the case of quantum random access codes
[6] and the time evolution of quantum observables [7].

More recently a framework was developed in order to
derive dimension witnesses in a prepare-and-measure sce-
nario [8], which represents the simplest but also the most
general case. Consider the experiment of Fig. 1. A first
device prepares on demand an unknown physical system

in one out of N possible states �x. A second device then
performs one out of m possible measurements, giving an
outcome b ¼ 1; . . . ; k. The experiment is described by a
set of conditional probabilities Pðbjx; yÞ, which represent
the probability of observing outcome b when state x was
prepared and measurement ywas performed. In each round
of the experiment, which state x is prepared and which
measurement y is performed is chosen by the observer.
However, the important point is that what the states and
measurements actually are is unknown to the observer.
The observer’s task will then be to estimate the minimal
dimension d of the system that is compatible with the
experiment. More precisely what is the minimal dimension
necessary to reproduce a given set of conditional proba-
bilities Pðbjx; yÞ?
In the case of classical systems, the above problem can

be tackled using the framework of Ref. [8], which allows
one to derive dimension witnesses for classical systems,
based on geometrical ideas. For quantum systems however,
finding dimension witnesses for systems of arbitrary
Hilbert space dimension is challenging, and no general
solution has been provided yet. The approach of Ref. [8]
can be used to derive quantum dimension witnesses,
but the validity of these can generally be tested only

FIG. 1. Testing the dimension of an unknown system in a
prepare-and-measure scenario.
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numerically. Hence this approach can be used only for
systems of relatively low dimension. The approach of
Ref. [6] does not rely on numerics, but gives witnesses
for which strong and/or tight bounds can be derived only
in particular cases. Finally, the approach of Ref. [7] does
not apply to the static case.

The problem of testing the dimension of quantum sys-
tems in a prepare-and-measure scenario is well motivated,
and not only from a purely conceptual point of view.
Indeed, in quantum information, the dimensionality of
quantum systems represents a resource for information
processing. In general, systems of larger dimension offer
more power for computation and communication. In par-
ticular, they are known to simplify quantum logic [9],
enable for the optimal implementation of certain quantum
protocols [10], and allow for lower detection efficiencies
in Bell tests [11,12]. Moreover, the dimension of quantum
systems plays a crucial role in the security of standard
quantum cryptography [13]. Finally, dimension witnesses
are relevant in practice, as demonstrated by two recent
experiments [14,15], and several novel quantum informa-
tion protocols are based on dimension witnesses, e.g., for
quantum cryptography [16] and randomness expansion [17].

In the present Letter, we present a general and simple
method for deriving dimension witnesses for quantum
systems of arbitrary dimension. Our approach is based on
the distinguishability of quantum states, that is, how well
two (or more) quantum states can be distinguished from
each other by performing the most general measurement.
Thus our work highlights a strong link between quantum
dimension witnesses and the problem of quantum state
discrimination (see, e.g., Refs. [18–21]), which has rece-
ived considerable attention in the last years.

We start by introducing the basic notions and notations.
An experiment as described in Fig. 1 admits a quantum
d-dimensional representation when

Pðbjx; yÞ ¼ trð�xM
b
y Þ (1)

for some states �x and measurement operators Mb
y acting

on Cd. We also say that the experiment admits a classical
d-dimensional representation when all states in the set f�xg
commute pairwise. In this case, the states can be repre-
sented as classical states of dimension d, i.e., probability
distributions over dits.

Since characterizing the set of experiments that admit a
quantum or classical d-dimensional representation is in
general a difficult problem, it is convenient to introduce
dimension witnesses. Consider a function that associates
to each probability distribution Pðbjx; yÞ a real number. A
function f is then termed a quantum dimension witness if

f½Pðbjx; yÞ� � Qd (2)

for all experiments involving quantum systems of Hilbert
space dimension smaller or equal to d, and there exists a set
of data P�ðbjx; yÞ involving systems in higher dimensions

such that f½P�ðbjx; yÞ�>Qd. Classical dimension wit-
nesses are defined in a similar way; in this case the upper
bound in Eq. (2) is denoted Cd.
Before we proceed with the presentation of our main

results, it is instructive to understand why the distinguish-
ability of states is important here. Consider first the case
d � N. Here, the dimension d of the system, the mediating
particle, is in fact large enough to encode perfectly the choice
of preparation x. Hence, it is then possible that the state
preparator simply sends x to themeasuring device. The latter
then has all information about both x and y, and can thus
simulate any statistics Pðbjx; yÞ. Thus, if by measuring the
mediating particle it is possible to perfectly identify which
preparation x was chosen, no relevant device-independent
statement can be made about the dimension of the system.
On the other hand, when d < N, the choice of prepara-

tion x cannot be encoded perfectly in the system anymore,
since the latter cannot be prepared in sufficiently many
perfectly distinguishable states. Therefore, not all statistics
Pðbjx; yÞ can be reproduced when d < N, and relevant
device-independent statements can be made.
Thus, a central aspect of the problem is howwell one can

distinguish between a set of N quantum states. Intuitively,
a good strategy consists in choosing the states to be as far
from each other as possible in the Hilbert space, in order
to make them as distinguishable as possible. However, the
dimension of the Hilbert space in which the set of states is
embedded will clearly put restrictions on their distinguish-
ability. It is exactly this aspect that we will exploit to derive
our dimension witnesses.
The distinguishability of quantum states is captured

by the notion of trace distance. Given two quantum states
�x and �x0 , how well they can be distinguished from each
other, allowing for the most general measurement, is quan-
tified by the trace distance

Dð�x; �x0 Þ ¼ 1
2k�x � �x0k1: (3)

Operationally, the trace distance represents the maximal
distance in probabilities that a positive operator valued
measure (POVM) element M may occur depending if the
state is �x or �x0 , that is,

Dð�x; �x0 Þ ¼ max
M

trðð�x � �x0 ÞMÞ: (4)

Also, the trace distance can be related to another notion of
distinguishability, the fidelity F between �x and �x0 ,

1� Fð�x; �x0 Þ � Dð�x; �x0 Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2ð�x; �x0 Þ

q
: (5)

Indeed if both states are pure, Fð�x; �x0 Þ ¼ jh�xj�x0 ij, and
the second inequality in Eq. (5) is saturated.
Consider the scenario of Fig. 1. Take the simple case in

which there are N possible preparations, and a single
measurement (i.e., m ¼ 1) with N outcomes. In this case,
we can build a dimension witness based on the average
guessing probability, i.e., the function
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UN ¼ 1

N

XN
x¼1

Pðb ¼ xjxÞ: (6)

In order to show that UN works as a quantum dimension
witness for any d < N, we must find an upper bound onUN

depending on d. This can be done as follows:

UN ¼ 1

N

XN
x¼1

trð�xMxÞ � 1

N

X
x

trðMxÞ ¼ d

N
¼ Qd; (7)

hence leading to a dimension witness for any d < N. Note
however, that for this witness we have that Cd ¼ Qd (for
any d � N); hence, the witness cannot distinguish between
classical and quantum states of the same dimension.

After this warm up, let us now see how to construct
dimension witnesses for systems of arbitrary dimension d
such that Cd < Qd. Consider again N possible prepara-
tions, but now m ¼ NðN � 1Þ=2 dicotomic measurements
(with outcomes �1), labeled as y ¼ ðx; x0Þ, with x; x0 2
f1; . . . ; Ng; x > x0. Consider the following expression:

WN � X
x>x0

jPðx; ðx; x0ÞÞ� Pðx0; ðx; x0ÞÞj2; (8)

where we used the simplified notation Pðx; ðx; x0ÞÞ �
Pðb ¼ 1jx; ðx; x0ÞÞ.

We will now see how to upper bound WN depending on
d. For each measurement y ¼ ðx; x0Þ, callMðx;x0Þ the POVM
element corresponding to outcome b ¼ 1. From the struc-
ture ofWN , it is clear that eachMðx;x0Þ can be taken to be the
projector onto the subspace generated by the positive
eigenvectors of �x � �x0 . Also, sinceWN is a convex func-
tional, it follows that, in order to compute its maximum
value, we can assume each of the states f�xg to be pure, i.e.,
�x ¼ j�xih�xj. We thus have that

WN ¼ X
x>x0

jtrfð�x � �x0 ÞMðx;x0Þgj2 �
X
x>x0

jDð�x; �x0 Þj2

� X
x>x0

ð1� jh�xj�x0 ij2Þ; (9)

wherewehave usedEqs. (4) and (5).Nextweuse the fact that

X
x>x0

jh�xj�x0 ij2 ¼ 1

2

�X
x;x0

jh�xj�x0 ij2 � N

�
(10)

¼ N2

2
trð�2Þ � N

2
; (11)

with � ¼ 1
N

P
N
x¼1 j�xih�xj being a normalized quantum

state. Since the purity of any d-dimensional normalized state
� is lower bounded by

trð�2Þ � 1

d
; (12)

we obtain that

WN � X
x>x0

jPðx; ðx; x0ÞÞ� Pðx0; ðx; x0ÞÞj2 � Qd

¼ N2

2

�
1� 1

minðd; NÞ
�
: (13)

Thus WN � Qd is a quadratic quantum dimension witness
for any d < N.
An interesting feature of the above witness is its tight-

ness. That is, for any dimension d, there exists an ensemble
of states f�xgNx¼1 � BðCdÞ and measurement operators
fMðx;x0Þg�BðCdÞ which saturate the inequality of Eq. (13).

Suppose that, for any d � N, there exists a set of pure
states fj�xigNx¼1 � BðCdÞ such that � ¼ 1

N

P
N
x¼1 j�xi	

h�xj ¼ 1
d1d. Then trð�2Þ ¼ 1

d . Thus, by choosing Mðx;x0Þ
to be the measurement that optimally discriminates
between j�xi and j�x0 i, all inequalities incurred into in
the derivation of the bound will turn into equalities, there-
fore proving the attainability of the bound. Hence it suffi-
ces to prove that such vectors exist. It can be verified that
the normalized vectors

j�xi ¼ 1ffiffiffi
d

p Xd�1

k¼0

ei2�kx=Njki (14)

do the trick.
Next, we can derive a tight upper bound for classical

systems of arbitrary dimension for our witness Eq. (13). By
convexity, it follows that the quantity WN is maximized
using a deterministic strategy [8]. It then easily follows that

WN � Cd ¼ NðN � 1Þ
2

�
�
N

d

��
N � d

2

��
N

d

�
þ 1

��
; (15)

where bxc is the integer part of x. Unless N is a multiple of
d, we have that Cd < Qd; hence, our witness can distin-
guish between classical and quantum systems of the same
dimension. In particular, when N is prime we have that
Cd < Qd for any d < N. This is illustrated in Table I, for
the case N ¼ 7. Notably, dimension witnesses featuring
such a quantum advantage are potentially useful, for instance
for the use of dimension witnesses in information-theoretic
tasks [16,17], and might be relevant to discuss problems in
the foundations of quantum mechanics [22].
It turns out that our quadratic dimension witness can

also be linearized, which might prove to be useful in certain
situations. Here our main ingredient is the Cauchy-Schwartz
(CS) inequality: for any real vector ~v, we have that

TABLE I. Tight bounds for d-dimensional classical (Cd) and
quantum (Qd) systems for the dimension witness W7. Notably,
the witness can distinguish between classical and quantum
systems of the same dimension for any d < N, since Cd < Qd.

d 2 3 4 5 6 7

Cd 12 16 18 19 20 21

Qd 12.25 16.33 18.38 19.60 20.42 21
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ffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

v2
i

vuut � 1ffiffiffiffiffi
M

p XM
i¼1

jvij; (16)

with equality iff jvij ¼ jvjj for all i, j ¼ 1; . . . ;M.

Applying the CS inequality to our problem, i.e., to
Eq. (13), we obtain the linear dimension witness,

VN � X
x>x0

Pðx; ðx; x0ÞÞ� Pðx0; ðx; x0ÞÞ

� N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þp

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� 1

minðd; NÞ
�s
¼ Qd: (17)

Note that, the above inequality cannot always be saturated;
hence, the witness is not tight in general. However, one
notable exception is the caseN ¼ dþ 1. Consider quantum
states as given by Eq. (14). Then, one can check that
jh�xj�x0 ij ¼ 1

d , for all x � x0. This means that, for optimal

measurements, Pðx; ðx; x0ÞÞ� Pðx0; ðx; x0ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

d2

q
for

all x, x0, and so the CS inequality Eq. (16) is saturated.
Thus we finally get the tight linear dimension witness,

VN � Qd ¼ ðdþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 1

p

2
: (18)

Note that the witness Eq. (17) turns out to be tight for other
cases as well. For small values of N and d, we investigated
numerically the tightness of the witness (see Table II), using
the techniques of Ref. [23]. The caseN ¼ d2 is of particular
interest. Tightness is achieved for N � 10. Moreover, the
optimal measurements are given here by symmetric infor-
mationally complete (SIC) POVMs [24]. A study of the
general case would be relevant, given the interest devoted
to SIC POVMs.

Next we give the maximum value of VN for classical
systems of dimension d ¼ N � 1, which is found to be

Cd ¼ dðdþ1Þ
2 � 1. Since Cd < Qd, this linear witness allows

one to discriminate between quantum and classical sys-
tems, for all d � 2.

In conclusion, we have presented quantum dimension
witnesses for systems of arbitrary Hilbert space dimension.
Notably, our witnesses allow us to discriminate between
classical and quantum systems of the same dimension, a
property that has already proven to be useful for
information-theoretic tasks [16,17]. Hence it would be
interesting to investigate the robustness to noise and losses
[25] of our witnesses. Finally, our approach highlights a
strong connection between dimension witnesses and quan-
tum state discrimination, hence establishing a link between

two research topics that have recently attracted attention,
and might generate more results in the future.
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