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We describe how to characterize dynamical phase transitions in open quantum systems from a purely

dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach

goes beyond considering only properties of the steady state. While in small quantum systems dynamical

transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems

they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase

transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser,

and a dissipative version of the quantum Ising model. In these examples dynamical transitions are

accompanied by clear changes in static behavior. This is however not always the case, and, in general,

dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical

counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses,

whose dynamics can vary widely despite having identical (and trivial) stationary states.

DOI: 10.1103/PhysRevLett.110.150401 PACS numbers: 05.30.Rt, 64.70.P�

Recent experimental progress in quantum optics and
cold atomic physics has stimulated great interest in the
study of open many-body quantum systems [1–7].
Currently, much effort is dedicated to the understanding
and classification of dynamical phases and transitions
among them, for example, in the Dicke model [7–9], in
lattice bosons subject to engineered dissipation [1], and in
spin systems [3–5,10]. Typically, dynamical phase transi-
tions are detected and analyzed through changes in static
order parameters, such as superfluid density or spin polar-
ization, calculated in the system’s stationary state.

The aim of this work is to characterize dynamical phases
exclusively through time correlations within quantum
jump trajectories, and not through static order parameters.
We do so by building on an elegant connection between
open quantum systems—described by a Lindblad master
equation—and matrix product states (MPS) [11] put for-
ward in Ref. [12]. We pursue the usual dual description of
open system dynamics. On the one hand, any individual
realization of the dynamics is stochastic. In the case of an
open quantum system this is represented by a stochastic
wave function corresponding to a specific sequence of
quantum jumps, with the whole ensemble of these stochas-
tic trajectories being encoded in a MPS. On the other hand,
the evolution of probabilities is deterministic and is derived
from the evolution of the density matrix under the action of
a quantum master operator (QMO). The dynamical phase
structure of an open system is given by the low lying
spectrum of the QMO [5]. More specifically, dynamical
phases are characterized by a nonanalytic behavior of the
spectrum with respect to changes in physical parameters
[3–5]. However, the QMO spectrum of many-body systems
is typically computationally intractable, and difficult to

measure experimentally. In contrast, the quantum jump
trajectories are experimentally accessible and the associ-
ated MPS carries complete information about the QMO
spectrum [13]. Our aim is thus to characterize dynamical
phase transitions in terms of correlations of quantum jump
trajectories and their (nonanalytic) response to biasing
induced by counting fields [14,15].
To illustrate our ideas we proceed as follows: After a

presentation of the formalism we apply it to three open
quantum systems each exhibiting dynamical phase transi-
tions which are also accompanied by clear changes in the
statics: a ‘‘blinking’’ three-level system [15,16], the sim-
plest example of a quantum system displaying metastabil-
ity, the micromaser, which has dynamical transitions of
both first- and second-order kind [17,18], and a dissipative
quantum Ising model displaying a dynamical first-order
transition [3,4]. These examples span the range from sim-
ple single-body to complex many-body systems—where
dynamical transitions are a consequence of genuine col-
lective effects—and appear to exhaust all possible generic
cases. We consider, however, a fourth class of problems,
illustrated via a model of dissipative quantum glasses [10],
whose dynamical behavior can change drastically while
their statics remain invariant throughout. This highlights
the need for a dynamical approach like the one presented
here for characterizing complex open systems where static
order parameters are nonexistent or difficult to identify.
The density matrix � of the open quantum systems we

consider evolves under the master equation @t� ¼ W ð�Þ
with the QMO given by W ð�Þ � H ð�Þ þDð�Þ. Here,
the superoperators H ð�Þ ¼ �i½H;�� and Dð�Þ ¼P

N
m¼1 Lm � Ly

m � 1
2

P
N
m¼1fLy

mLm;�g govern the coherent

and dissipative dynamics, respectively. They depend on
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the Hamiltonian H and the set fLm;m ¼ 1; . . . ; Ng of jump
operators. The specific form of the latter depends on the
coupling of the system to the bath. It is well established
that an open system dynamics generates a MPS on the bath
degrees of freedom [12]. We use this connection to link the
analysis of the emission sequence of the bath quanta, i.e.,
the quantum jump trajectories, to the more familiar picture
of static phases of the ground state of a one-dimensional
spin system. The prescription of Ref. [12] is clearest for the
evolution of the density matrix � over short but finite time
intervals �t, represented, for instance, by the Kraus map,

T�tð�Þ � eH�teD�tð�Þ ¼ K0�K
y
0 þ XN

m¼1

Km�K
y
m; (1)

with Kraus operators K0 ¼ e�i�tH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �t

P
N
k¼1 L

y
kLk

q
and

Km ¼ e�i�tH
ffiffiffiffiffi
�t

p
Lm. Such discrete (but nonunique) repre-

sentations of dissipative evolutions have been employed
recently in experiment to simulate the dynamics of open
many-body systems [19].

Figure 1(a) sketches the action of the Kraus operators:
K0 corresponds to nonunitary (i.e., no-jump) evolution,
while Km>0 represents the effect of the quantum jump
associated with Lm. The evolution of the density matrix
over macroscopic times is generated by multiple
applications of the map (1). This produces quantum jump
trajectories as shown in the upper panel of Fig. 1(b).
The probability for a certain trajectory fn1; n2; . . . ; nMg
to occur after M time steps is given by pn1n2...nM ¼P

fjhf jKnM . . .Kn2Kn1jiij2, where jii is the initial state of

the system. The sum runs over a basis of final system states
jfi, and each term is the probability for connecting the

initial and final states via a certain sequence of quantum
jumps.
These probabilities are encoded in a MPS which can be

thought of as being generated by letting the system interact
sequentially with a chain of (N þ 1)-dimensional spins
initially prepared in a fixed pure state [12]. After M steps
the quantum state of the system and the M spins with
which it has interacted is j�i ¼ P

fjfi � jc ðfÞi, where
jc ðfÞi is the (unnormalized) MPS,

jc ðfÞi ¼ XN

nM;:::;n1¼0

hfjKnM . . .Kn1 jiijn1; . . . ; nMi; (2)

with the sum running over all spin basis vectors. We can
think of jc ðfÞi as the ground state of a fictitious one-
dimensional spin system with specific boundary conditions
[see Fig. 1(b)]. The state j�i therefore encodes the whole
ensemble of quantum trajectories: each basis state
jn1; . . . ; nMi corresponds to a specific trajectory and its
amplitude hfjKnM . . .Kn1 jii is related to the probability

pn1n2...nM of it occurring dynamically. While this connec-

tion is only formal, it illustrates that the study of dynamical
phases of open systems is not different from that of the
static properties of a one-dimensional spin system, regard-
less of the actual spatial dimension of the open problem.
Dynamical phase transitions will then become visible in
the time correlations of the quantum jumps which corre-
spond to spatial correlations in the spins.
The limit of very long times is the ‘‘thermodynamic limit’’

of the associated spin problem. In this regime the two-time
(connected) correlations of observables at positions y and
yþ x have the asymptotic form (see, e.g., Ref. [20])

hc ðfÞjAðyÞBðyþxÞjc ðfÞic / Re�x
2 ¼ e�x=� cosðx�2Þ. Here

�2 ¼ j�2j expð�i�2Þ denotes the eigenvalue(s) with the
second largest absolute value, of the transfer operator E ¼P

N
n¼0 K

�
n � Kn (or equivalently of T�t), the largest eigen-

value being �1 ¼ 1 by the conservation of probability of
the map (1). The correlation length � is given by ��1 ¼
� logj�2j. The correlations exhibit exponentially damped
oscillations when the eigenvalue �2 is complex, in which
case ��

2 is also an eigenvalue of T�t. It is more convenient
to directly study the eigenvalues � of the QMO W . In the
limit �t ! 0 temporal correlations between quantum jumps
behave as hAðtÞBðtþ t0Þic / expð�t0=�Þ cosð!t0Þ, with � �
�1=Reð�2Þ and ! � Imð�2Þ, where �2 is the eigenvalue of
W with the second largest real part, Fig. 1(c) (note that the
eigenvalue with largest real part is �1 ¼ 0).
Dynamical phase transitions will manifest in the closing

of the spectral gap of the operator W , i.e., �2 ! 0 [see
Fig. 1(c)]. In the following we will analyze four example
systems using the QMO spectrum and quantum jump tra-
jectories calculated via the quantum jump Monte Carlo
method discussed in Ref. [16].
(i) Three-level system.—This system [16], depicted in

Fig. 2(a), is described by Hamiltonian H3 ¼ �1j0ih1j þ
�2j0ih2j þ H:c: and a single jump operator L ¼ ffiffiffiffi

�
p j0ih1j.

FIG. 1. (a) Kraus operators defining open dynamics: K0 is the
nonunitary (no-jump) evolution, while Km>0 refers to the occur-
rence of a quantum jump of kind m. (b) The amplitude for a
sequence of quantum jumps is obtained directly from the Kraus
operators. This can be mapped to the state of a fictitious one-
dimensional spin system, and all possible trajectories with their
amplitudes can be gathered in a MPS interpreted as the quantum
state of the spin chain. (c) The two-time correlation time of
quantum jumps (or correlation length of the spin chain) is the
inverse of the spectral gap of the QMO W ; dynamical transi-
tions occur when this gap closes as a function of an external
parameter.
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It exhibits a dynamical phase transition at �2 ¼ 0 (where
�2 ¼ 0), which manifests in strongly intermittent behavior
of photon emission when �2 � �1 [bottom of Fig. 2(a)]
[21]. The reason is that at �2 ¼ 0 the system decouples
into a driven two-level system undergoing frequent quan-
tum jumps and an inactive single dark level. This corre-
sponds to a twofold degeneracy of the leading eigenvalue
[Fig. 2(a)], which is lifted when �2 > 0. For �2 * 0 the
system can switch between these two phases on a time
scale��1

2 , resulting in strongly intermittent behavior remi-

niscent of a (smoothed) first-order transition [15]. From the
perspective of the MPS this corresponds to the quantum
phase transitions reported in Ref. [12]. Beyond the tran-
sition at �2 ¼ 0, the three-level system also features a
dynamical transition at finite �2 where time correlations
become oscillatory [see Fig. 2(a)]. Related transitions have
been reported in a NMR experiment; see Refs. [22,23].

(ii) Micromaser.—This more complex single-body sys-
tem has an infinite Hilbert space, and features a critical
point and a sequence of first-order transitions [17,18]. It is
modeled by a resonant single-mode cavity coupled to a
finite temperature bath and pumped by excited two-level
atoms which are sent into the cavity with a constant rate r;
see Fig. 2(b). The Hamiltonian is zero and there are
four jump operators, two nonlinear ones stemming from

the atom-cavity interaction, L1 ¼
ffiffiffi
r

p
ay sinð�

ffiffiffiffiffiffi
aay

p
Þffiffiffiffiffiffi

aay
p and

L2 ¼
ffiffiffi
r

p
cosð�

ffiffiffiffiffiffiffiffiffi
aay

p
Þ, and two from the cavity-bath inter-

action, L3 ¼
ffiffiffiffi
�

p
a and L4 ¼

ffiffiffi
	

p
ay. Here a, ay are the

raising or lowering operators of the cavity mode, � and 	
are the thermal relaxation and excitation rates, and �

encodes the atom-cavity interaction [18]. The spectrum
of W is real and is depicted in Fig. 2(b) as a function of
the ‘‘pump’’ parameter 
 ¼ �=

ffiffiffi
r

p
. A sequence of first-

order transitions is visible beyond 
 ¼ 4, and quantum
jump trajectories (here we monitor quantum jumps asso-
ciated to L1) show the typical intermittent behavior. In
contrast, in the vicinity of 
 ¼ 1 the spectral gap closes
in a way that makes the spectrum dense. This is the onset of
a second-order phase transition which strictly only occurs
in the limit r ! 1 [24]. Typical quantum jump trajectories
near the critical point fluctuate very strongly [bottom of
Fig. 2(b)]. Also here dynamical transitions are accompa-
nied by a change in the statics: at first-order transitions the
mean photon occupation of the cavity switches between
two distinct values, while at the critical point the variance
of the photon number undergoes a jump [17].
(iii) Dissipative Ising model.—In a many-body system

such as this one [3,4] [see Fig. 2(c)], the degeneracy
leading to a phase transition is a collective effect and not
imposed externally or through nonlinear jump operators.
The Hamiltonian is HI ¼ �

P
L
k¼1 �

k
x þ V

P
L
k¼1 �

k
z�

kþ1
z ,

where �k

 are the Pauli spin matrices. The jump operators

are Lk ¼
ffiffiffiffi
�

p
��

k , which produce incoherent spin flips,

j"i ! j#i, at a rate �. In Fig. 2(c) we show the real part
of the eigenvalues of the QMOW for various system sizes
L. With increasing L the spectral gap closes over an entire
(coexistence) region in parameter space and we expect it to
approach zero when L ! 1. This resembles a static phase
transition in the MPS. For finite L and finite gap, the
system switches between two dynamical phases on long
but finite time scales and quantum jump trajectories are

FIG. 2 (color online). Examples for open quantum systems where a dynamical transition is accompanied by a static transition. Each
panel shows a sketch of the system, the real part of the spectrum of the QMO, and sample trajectories (from top to bottom). (a) The
driven three-level system has a dynamical transition at �2 ¼ 0 (circled region). For �2 * 0 quantum jumps are highly intermittent
(we show the case �2 ¼ 0:01� and �1 ¼ 4�). In the boxed region �2 acquires an imaginary part and time correlations become
oscillatory. (b) The micromaser displays both first- and second-order dynamical transitions. The two sample trajectories are taken at
the second-order transition point (red circle and red trajectory) and within the coexistence region of two dynamical phases (blue box
and blue trajectory). In order to facilitate the representation of the trajectory we have collected quantum jumps in time bins of length
tbin ¼ 3=�. (c) The open Ising model with L spins has a genuine many-body dynamical first-order transition and the spectral gap closes
when L ! 1. In the parameter regime chosen (V ¼ 100�) the spectral gap becomes small for 10� 	 � 	 30�. In this near
coexistence region of two dynamical phases one observes strongly intermittent behavior of quantum jumps which are strongly
correlated in the spatial direction (we show data for L ¼ 10, � ¼ 25�).
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strongly intermittent. Once again, the dynamical transition
can be traced back to a bistable static behavior: When the
emission of photons is plentiful, the average magnetization
is close to zero, while it is large and negative during the
dark periods [4]. This would suggest that dynamical tran-
sitions can always be anticipated to occur by simply con-
sidering static or steady-state properties. The next example
proves that this is not the case.

(iv) Dissipative quantum glass.—This system is related
to the dissipative quantum glass models of Ref. [10]. It is
a spin chain with Hamiltonian Hg¼�

P
L
k¼1�

k
xf

2
kþ1ðpÞ

and jump operators Lk¼
ffiffiffiffi
�

p
��

k fkþ1ðpÞ (see Fig. 3). The

operators fkðpÞ are kinetic constraints. If fkðpÞ¼1, the
system is just a set of noninteracting two-level systems
with steady-state density matrix �ss¼�L

k¼1½fð1=2Þþ
ð!�Þ=ð�2þ!2ÞgPkþfð1=2Þ�ð!�Þ=ð�2þ!2ÞgQk�, where

! � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2 þ �2

p
, Qk ¼ 1

2 þ �
2!�

k
z � 2�

! �k
y, and Pk ¼

1�Qk. Here the statics is clearly featureless. The problem
becomes interacting and glassy if we choose the con-
straints to be fkðpÞ ¼ pQk þ ð1� pÞ1 with 0 	 p 	 1:
For p ¼ 0 we have the noninteracting problem and for
p ¼ 1 a fully constrained quantum glass [10]. When p ¼ 1
the state of the spin on site k can only change if the state
j�ikþ1 of its neighbor satisfiesQkþ1j�ikþ1 � 0, leading to
correlated dynamics in the system. The parameter p con-
trols how glassy this dynamics is. Figure 3 shows that the
spectral gap of the QMO would close at p ¼ 1. Here we
expect a dynamical first-order phase transition to occur in
analogy with classical constrained models [14,25]. A cru-
cial feature of this model is that the steady state for any
value of p is the trivial �ss; i.e., there is no change in the
statics despite the change in the dynamics, as is evident
from the example jump trajectories shown Fig. 3. As p!1
the system is most of the time inactive and quantum jumps
become more and more localized in space and time, a
phenomenon called dynamical heterogeneity, which is a
hallmark of glassy relaxation [26]. In contrast to the three

systems described above, here the dramatic dynamical
change with p is impossible to guess from static properties
which are p independent and trivial throughout.
Since the ensemble of trajectories is fully encoded in the

MPS j�i, the sample trajectories of Fig. 3 indicate that the
dynamical transition is equivalent to a static transition
within the MPS as p ! 1. Usually such static quantum
transitions are accompanied by a singularity, such as a
logarithmic divergence in the entanglement entropy of large
spin blocks [27]. In our case this would be entanglement
between quantum jumps in subsequent long time segments.
The entropy of a large block, however, is just 2 times the
von Neumann entropy of the stationary state SE ¼
�2Trð�ss log�ssÞ of the system, where �ss � Trc j�ih�j
[28]. Hence, due to the invariance of the stationary statewith
p, this entanglement measure does not detect the transition.
The reason is that—as in glasses, and is likely also in

complex many-body systems—the fields driving the tran-
sition do not couple directly to obvious static quantities,
but do so to time-integrated observables. An example is
‘‘counting’’ fields introduced when computing full count-
ing statistics [29] of dynamical observables [15].
Constrained models such as the one above are known to
exhibit transitions in trajectories, which are evident in the
moment generating function (MGF) of the number of
quantum jumps, ZtðsÞ � P

JPtðJÞe�sJ, where PtðJÞ is the
probability of observing J jumps in time t. In the t ! 1
limit ZtðsÞ becomes singular at some value s ¼ sc of the
counting field [14,15], indicating a phase transition in the
ensemble of trajectories. At long times, the MGF is obtained
from the largest eigenvalue of a deformation W ! W s of
the QMO parametrized by s [14,15]. The field s therefore
couples directly to the spectrum, so that a singularity of
the MGF at sc indicates the existence of close to degenerate
but distinct dynamical states. By driving s one can single
these states out; see Refs. [4,15,18] for details.
The MGF can be connected to the MPS through the

norm, ZtðsÞ ¼ h�ðsÞj�ðsÞi, of the deformation j�ðsÞi �
e�sĴ=2j�i, where Ĵ is an operator that counts the number of
nm>0 in a state jn1; . . . ; nMi. In a thermodynamic analogy
ZtðsÞ is like a partition sum over trajectories and s a
chemical potential which favors or disfavors quantum
jumps. The state j�ðsÞi is thus a superposition of MPS
like those of (2) but with each term weighed by a factor of

e�s=2 for each jump. The eigenstate �ðsÞ of W s corre-
sponding to the largest eigenvalue is related to j�ðsÞi
through Trc j�ðsÞih�ðsÞj ¼ ZtðsÞ�ðsÞ, where Tr�ðsÞ ¼ 1

and �ð0Þ ¼ �ss. The entanglement entropy of this state,
~SE ¼ �2Tr½�ðsÞ log�ðsÞ�, will depend on s, and will dis-
play nonanalytic behavior at sc. At this level counting
fields work in a similar manner to more standard static
fields which drive phase transitions, but couple directly to
the relevant dynamical order parameters that reveal tran-
sitions in quantum jump trajectories. This perspective
should be useful in the study of dynamical phase

FIG. 3. Dissipative quantum glass model, with glassiness con-
trolled by the parameter p: at p ¼ 0 the system is noninteract-
ing, for p ¼ 1 dynamics is fully constrained. The spectral gap
closes at p ¼ 1 (we show the case of � ¼ 8�). Trajectories
shown consist of 5000 quantum jumps each. Dynamics changes
drastically with p, but the stationary state remains invariant.
Close to p ¼ 1 emission periods are localized in time and space
(see magnified region). For ease of visibility jumps are collected
in 500 evenly spaced time bins.
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transitions in systems where they are not obviously con-
nected to a change in spatial correlations.

We acknowledge discussions with B. Olmos. The work
was supported by EPSRC Grant No. EP/J009776/1 and
Fellowship No. EP/E052290/1.
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