PRL 110, 148701 (2013)

PHYSICAL REVIEW LETTERS

week ending
5 APRIL 2013

Parsimonious Module Inference in Large Networks

Tiago P. Peixoto™

Institut fiir Theoretische Physik, Universitdt Bremen, Hochschulring 18, D-28359 Bremen, Germany
(Received 19 December 2012; published 5 April 2013; publisher error corrected 5 April 2013)

We investigate the detectability of modules in large networks when the number of modules is not known
in advance. We employ the minimum description length principle which seeks to minimize the total
amount of information required to describe the network, and avoid overfitting. According to this criterion,
we obtain general bounds on the detectability of any prescribed block structure, given the number of nodes
and edges in the sampled network. We also obtain that the maximum number of detectable blocks scales
as +/N, where N is the number of nodes in the network, for a fixed average degree (k). We also show that
the simplicity of the minimum description length approach yields an efficient multilevel Monte Carlo
inference algorithm with a complexity of O(7N logN), if the number of blocks is unknown, and O(7N) if
it is known, where 7 is the mixing time of the Markov chain. We illustrate the application of the method on
a large network of actors and films with over 10° edges, and a dissortative, bipartite block structure.
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The detection of modules—or communities—is one of
the most intensely studied problems in the recent literature
of network systems [1,2]. The use of generative models
for this purpose, such as the stochastic blockmodel family
[3-20], has been gaining increasing attention. This
approach contrasts drastically with the majority of other
methods thus far employed in the field (such as modularity
maximization [21]), since not only is it derived from first
principles, but also it is not restricted to purely assortative
and undirected community structures. However, most
inference methods used to obtain the most likely block-
model assume that the number of communities is known in
advance [14,18,22-25]. Unfortunately, in most practical
cases this quantity is completely unknown, and one would
like to infer it from the data as well. Here we explore a very
efficient way of obtaining this information from the data,
known as the minimum description length principle
(MDL) [26,27], which predicates that the best choice of
model which fits given data is the one which most com-
presses it, i.e., minimizes the total amount of information
required to describe it. This approach has been introduced
in the task of blockmodel inference in Ref. [28]. Here, we
generalize it to accommodate an arbitrarily large number
of communities, and to obtain general bounds on the
detectability of arbitrary community structures. We also
show that, according to this criterion, the maximum num-
ber of detectable blocks scales as +/N, where N is the
number of nodes in the network. Since the MDL approach
results in a simple penalty on the log-likelihood, we use it
to implement an efficient multilevel Monte Carlo algo-
rithm with an overall complexity of O(7N logN), where
7 is the average mixing time of the Markov chain, which
can be used to infer arbitrary block structures on very large
networks.

The model.—The stochastic blockmodel ensemble is
composed of graphs with N nodes, each belonging to one
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of B blocks, and the number of edges between nodes of
blocks r and s is given by the matrix e,, (or twice that
number if r = s). The degree-corrected variant [14] further
imposes that each node i has a degree given by k;, where
the set {k;} is an additional parameter set of the model. The
directed version of both models is analogously defined,
with e,; becoming asymmetric, and {k; } together with
{k;"} fixing the in- and out-degrees of the nodes, respec-
tively. These ensembles are characterized by their micro-
canonical entropy S = In{), where () is the total number
of network realizations [29]. The entropy can be computed
analytically in both cases [30],

1 ers
S, =E - Ege” ln( ) (1)
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for the traditional blockmodel ensemble and,
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for the degree corrected variant, where in both cases E =
Y ..e,s/2 is the total number of edges, n, is the number of
nodes which belong to block r, and Ny is the total number
of nodes with degree k, and e, = Y (e,, is the number
of half-edges incident on block r. The directed case
is analogous [30] (see Supplemental Material [31] for an
overview).

The detection problem consists in obtaining the block
partition {b;} which is the most likely, when given an
unlabeled network G, where b; is the block label of
node i. This is done by maximizing the log-likelihood
In? that the network G is observed, given the model
compatible with a chosen block partition. Since we have
simply P = 1/}, maximizing In? is equivalent to mini-
mize the entropy S,/., which is the language we will use
henceforth. Entropy minimization is well defined, but only
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as long as the total number of blocks B is known before-
hand. Otherwise, the optimal value of S,/. becomes a
strictly decreasing function of B. Thus, simply minimizing
the entropy will lead to the trivial B = N partition, and the
block matrix e,, becomes simply the adjacency matrix.
A principled way of avoiding such overfitting is to consider
the total amount of information necessary to describe the
data, which includes not only the entropy of the fitted
model, but also the information necessary to describe the
model itself. This quantity is called the description length,
and for the stochastic blockmodel ensemble it is given by

2t/c = St/c + £t/cr (3)

where £,/ is the information necessary to describe the
model via the e,, matrix and the block assignments {b;}.
The minimum value of X,/ is an upper bound on the total
amount of information necessary to describe a given net-
work to an observer lacking any a priori information [28].
Therefore, the best model chosen is the one which best
compresses the data, which amounts to an implementation
of Occam’s razor. For the specific problem at hand, it is
easy to compute L, /.. The e,; matrix can be viewed as the
adjacency matrix of a multigraph with B nodes and E
edges, where the blocks are the nodes and self-loops are
allowed. The total number of e,, matrices is then simply

((((Il%?))) [32]. The total number of block partitions is BV.

Assuming no prior information on the model, we obtain L,
by multiplying these numbers and taking the logarithm,

L, = Eh(%) + NInB, @)

where h(x) = (1 + x)In(1 + x) — xInx, and E > 1 was
assumed. Note that Eq. (4) is not the same as the expression
derived in Ref. [28], which is obtained by taking the limit
E > B2, in which case we have £, = @ InE + NInB
[33]. We do not take this limit a priori, since, as we show
below, block sizes up to B ~ VE can in principle be
detected from empirical data. For the degree-corrected

variant, we still need to describe the degree sequence of
the network; hence,

L.=L,~NY pilnp,, (5)
k

where p, is the fraction of nodes with degree k. Note that
for the directed case we need simply to replace B(B + 1)/
2 — B? and k — (k~, k™) in the equations above.

MDL bound on detectability.—The difference X, =
2,/c — 2yclp=1 of the description length of a graph with
some block structure and a random graph with B = 1 can
be written as

_I_
2, = Eh(B(BZEI)) +NInB —EI,,, (6)

with -It = ermrs ln(mrs/wrws) and Ic = ermrsx
In(m,,/m,m,), where m,; = e,,/2E and w, = n,/N [and
equivalently for directed graphs, with B(B + 1)/2 — B?].
We note that I,,. € [0, InB]. If for any given graph we
have 3, > 0, the inferred block structure will be discarded
in favor of the simpler fully random B =1 model.
Therefore, the condition 3, <0 yields a limit on the
detectability of prescribed block structures according to
the MDL criterion. For the special case where E > B2, this
inequality translates to a more convenient form,

2InB
1,

(ky > ) (7

The directed case is analogous, with 2 InB — InB replaced
in the equation above.

Partial detectability and parsimony.—The condition
3, <0 is not a statement on the absolute detectability of
a given model, only to what extent the extracted information
(if any) can be used to compress the data. Although these are
intimately related, the MDL criterion is based on the idea
of perfect (or lossless) compression, and thus corresponds
simply to a condition necessary (but not sufficient) for
the perfect recoverability of the model parameters from
the data. Perfect inference, however, is only possible
in the asymptotically dense case (k) — oo [18], and in
practice one always has some amount of uncertainty.
Therefore, it remains to be determined how practical is
the parsimony limit derived from MDL to establish a noise
threshold on empirical data. In Fig. 1, is shown an example
of ablock structure with B=10and I,=1nB/6.InFig. 1(b),
is shown the minimum of 3,/E as a function of B, for
sampled networks with different (k), obtained with the
Monte Carlo algorithm described below. If (k) is large
enough [(k) > 6, according to Eq. (7)], the minimum of
3., is clearly at the correct B = 10 value, and, as is shown
in Fig. 1(b), this is exactly where the normalized mutual
information (NMI) [34] between the known and inferred
partition is the largest. However, for (k) < 6 the minimum
of 3, is no longer at B = 10, and instead it is at B = 1.
Nevertheless, the overlap with the correct partition is over-
all positive and is still the largest at B = 10, so the correct
partition is to some extent detectable, but the MDL criterion
rejects it. By experimenting with different planted block
structures [see Fig. 1(d)], one observes that the MDL thresh-
old lies very close to the parameter region where inferred
partition is no longer well correlated with the true partition.
This comparison can be made in more detail by considering
the special case known as the planted partition model (PP)
[35], which imposes a diagonal block structure given by
m,,=c/B,m,,=(1—c)/B(B—1)forr#s,andw, = 1/B,
and ¢ €[0,1] is a free parameter. In this case, it can
be shown that even partial inference is only possible if
(kKy>[(B—1)/(cB—1)]*[17,18,36,37], otherwise no infor-
mation at all on the original model can be extracted [38].
For smaller values of B, this bound is higher than Eq. (7) for
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FIG. 1 (color online). (a) Prescribed block structure with
B =10 and I, = InB/6, together with inferred parameters for
different (k); (b) description length 3, /E for different B and (k),
for networks sampled from (a). The vertical line marks the
position of the global minimum; (c) NMI between the true and
inferred partitions, for the same networks as in (b); (d) the same
as (c), but for different (k) and prescribed block structures. The
grey lines correspond to the threshold of Eq. (7). In all cases we
have N = 10*. The legend ordering matches the curve order in
(b) and (d), and the inverse curve order in (c).

this model [where we have I, = cIn(Bc) + (1 — ¢) X
In(B(1 — ¢)/(B — 1))], which means that there is a region
of parameters where the MDL criterion discards potentially
useful (albeit clearly noisy) information [see Fig. 2(a)].
Interestingly, however, for larger values of B, the MDL
criterion will most often result in lower bounds [see
Fig. 2(b)], meaning that whatever partial information which
can be recovered from the model will not be discarded.
For B — o we have ¢y = 2/(k) and ¢* = 1/4/{(k), and
thus, c{p;. < ¢* for (k) > 4 [41]. Therefore, so far as the PP
model serves as a good representation of more general block
structures, one should not expect excessive parsimony from
MDL, at least for sufficiently large values of B.

The largest detectable value of B.—The MDL approach
imposes an intrinsic constraint on the maximum value of B
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FIG. 2 (color online). (a) NMI between the true and inferred
partitions for PP samples with B = 10 as a function of ¢ for
different (k). The grey (red) lines correspond to the threshold ¢*
of Ref. [17] [cyp. given by Eq. (7)]; (b) difference between
cipr. and ¢*, for different (k) and B.

which can be detected, B,,,,, given a network size and
density. This can be obtained by minimizing 3, over
all possible block structures with a given B, which is
obtained simply by replacing I, by its maximum value
InB in Eq. (6),

B(B + 1)
2F

Equation (8) is a strictly convex function on B. This means
there is a global minimum X} |z_p  given uniquely by N
and E. It is easy to see that even if the prescribed block
structure with some B > B,,,, has minimal entropy (i.e.,
I,/. = 1nB), alternative partitions with B’ < B blocks
(obtained by merging blocks such that I/ e = InB") will
necessarily possess a smaller 3. Imposing 9%} /9B = 0,
one obtains B,,,, = wu((k))/E, with u((k)) being the solu-
tion of wIn(2/u?>+1)— (1 —1/{k))/mu =0 [for the
directed case we make 2/u’>—1/u? and 1/{k) — 2/{k)].
Therefore, according to the MDL criterion, the maximum
number of blocks which is detectable scales as B, ~ JN
for a fixed value of (k). This is consistent with the detect-
ability analysis in Ref. [42] for the traditional blockmodel
variant, which showed by other means that the model
parameters can only be recovered if B does not scale faster
than \/]V . Note that this means that the limit E >> B? cannot
be taken a priori when inferring from empirical data, and
hence, the value of £, computed in Ref. [28] needs to be
replaced with Eq. (4) in the general case.

The limit B, < +E is very similar to the so-called
“resolution limit” of community detection via modularity
optimization [43], which is B,%ax = JE. These two limits,
however, have different interpretations: the value of B,%ax
arises simply from the definition of modularity, which can
be to some extent alleviated (but not entirely avoided) by
properly modifying the modularity function with scale pa-
rameters [44—49]. On the other hand, the value of B, has a
more fundamental character, and corresponds to the situation
where knowledge of the complete block structure is no longer
the best option to compress the data. This value can be
improved only if any a priori information is known which
leads to a smaller class of models to be inferred, and hence,
smaller £,. In general,if we have £, = Ef(B*/E) + N InB,
where f(x) is any (differentiable) function, performing the
same analysis as above leads to By, = [u(k)E]"/®, with
af(u)u +2/(ky —1 = 0. However, it should also be
noted that if the existing block structure is locally dense
(i.e., e, ~ n,ny), as the union of B complete graphs consid-
ered in Ref. [43], the expressions in Egs. (1) and (2) are no
longer valid, and will overestimate the entropy. Using the
correct entropy {Eqgs. (5) and (9) in Ref. [30]} will lead to an
improved resolution. Unfortunately, for the dense case, the
entropy for the degree-corrected variant cannot be computed
in a closed form [30].

Detection algorithm.—For a fixed B, the best partition
can be found by minimizing S,/., via well-established

s = Eh( ) — (E - N)InB. ®)
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FIG. 3 (color online). Top: Value of %,/ E for both blockmodel
variants as a function of B for (a) the American football network
of Ref. [54] (with the corrections described in Refs. [57,58]) and
(b) the political books network of Ref. [55]. Bottom: Inferred
partitions with the smallest %,. Nodes circled in red do not
match the known partitions.

methods such as the Markov chain Monte Carlo method,
using the Metropolis-Hastings algorithm [50,51]. However,
a naive implementation based on fully random block mem-
bership moves can be very slow. We found that the perform-
ance can be drastically improved by using local information
and current knowledge of the partially inferred block struc-
ture, simply by proposing moves r — s with a probability
p(r— s|t) « e, + 1, where t is the block label of a ran-
domly chosen neighbor of the node being moved. Each
sweep of this algorithm can be performed in O(E) time,
independent of B (see Supplemental Material [31]). Having
obtained the minimum of S/, the best value of B is
obtained via an independent one-dimensional minimization
of 3, using a Fibonacci search [52], based on subsequent
bisections of an initial interval which brackets the mini-
mum. This method finds a local minimum in O(InB,,,)
time. The overall number of steps necessary for the entire
algorithm is O(7EInB,,,), where 7 is the average mixing
time of the Markov chain. If we have no prior information
on B,,,x, we need to assume B,,,, ~ +/E, in which case the
complexity becomes O(7EInE), or O(7N InN) for sparse
graphs. This compares favorably to minimization strategies
which require the computation of the full marginal proba-
bility 7% that node i belongs to block r, such as belief
propagation [17,18,53], which results in a larger complexity
of O(NB?) per sweep (or O(NB?I) for the degree-corrected
variant, with [ being the number of distinct degrees [53]), or
O(N?) for B ~ By

Empirical networks.—The MDL approach yields con-
vincing results for many empirical networks, as can be seen
in Fig. 3, which shows results for the college football
network of Ref. [54] and the political books network of
Ref. [55]. In both cases the correct number blocks is
inferred, and the best partition matches reasonably well
the known true values, at least for the degree-corrected

050 100 150 200 250 300

FIG. 4 (color online). Left: Inferred block structure for
the IMDB network, with N = 372, 787, E = 1, 812, 657, and
B =332, according to the MDL criterion, and the degree-
corrected stochastic blockmodel. Right: Circles correspond to
film blocks, and squares to actors. The node colors correspond
to the countries of production. See Supplemental Material [31]
for more details.

variant. Employing the Monte Carlo algorithm above,
results may be obtained for much larger networks. We
show in Fig. 4 the obtained block partition with the
degree-corrected variant for the Internet Movie Database
(IMDB) network of actors and films [56], where a film
node is connected to all its cast members. The bipartite
nature of the network is fully reflected in the inferred block
partition, where films and actors always belong to different
blocks, although this has not been imposed a priori (some-
thing which would be impossible to obtain with, e.g.,
modularity optimization). Besides this role separation,
the film blocks are divided sharply along spatial, temporal
and genre lines, and the actor blocks are closely correlated
with such film classes (see Supplemental Material [31] for
a more detailed analysis).

In summary, we showed how minimizing the full
description length of empirical network data enables sim-
ple, efficient, unbiased, and fully nonparametric analysis of
the large-scale properties of large networks, for which no
a priori information is available, while at the same time
providing general bounds on the detectability of arbitrary
block structures from empirical data.

I would like to thank Tim S. Evans for pointing out
some corrections to the American football data, and
Laerte B.P. de Andrade for useful conversations about
the IMDB data.
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