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We investigate, via numerical simulations, mean field, and density functional theories, the magnetic

response of a dipolar hard sphere fluid at low temperatures and densities, in the region of strong

association. The proposed parameter-free theory is able to capture both the density and temperature

dependence of the ring-chain equilibrium and the contribution to the susceptibility of a chain of generic

length. The theory predicts a nonmonotonic temperature dependence of the initial (zero field) magnetic

susceptibility, arising from the competition between magnetically inert particle rings and magnetically

active chains. Monte Carlo simulation results closely agree with the theoretical findings.
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More than 30 years have passed since the first experi-
mental discovery of a nonmonotonic temperature (T)
dependence of the initial (zero-field) magnetic susceptibil-
ity � in magnetic fluids [1]. The observation of a maximum
in � on cooling was immediately followed by controversial
discussions among experimentalists and theorists [2–8].
It was debated whether the maximum was an equilibrium
property of all ferrofluids or the fluid carrier was becoming
so viscous that the rotational degrees of freedom of parti-
cles were blocked with respect to the accessible frequen-
cies of the probing field [2,4]. Experiments were not able to
provide evidence of the formation of magnetically inert
aggregates of particles which could explain the low T
decrease of susceptibility. At the same time, the interesting
hypothesis of a dynamic arrest of the magnetic particles
themselves, due to the formation of a dipolar glass [1,9],
did not succeed in providing a coherent picture of the
ferrofluid behavior at low T.

The debate on the nonmonotonic behavior of � has
remained silent for almost 10 years. Recently, Lebedev
[7] successfully synthesized a magnetic fluid, whose
carrier remained liquid down to 160 K, and measured the
initial susceptibility at frequencies down to 0.01 Hz,
providing definitive evidence of the �maximum in thermal
equilibrium and calling for a renewed effort in the direc-
tion of understanding the physical origin of such a
phenomenon.

At the same time, several simulation studies [10–17] of
dipolar particles have attempted to elucidate the phase
behavior and the microscopic structural crossovers
[12,18–26] which take place in ferrofluids. Indeed, the
dipolar interaction has a strong directional component
favoring the head-to-tail arrangement of the particles and
the formation, at low T, of linear aggregates. Some of these

studies showed the presence of ringlike structures in addi-
tion to the expected linear chains, a finding confirmed also
by recent experimental evidence [27]. Numerical investi-
gations of the paradigmatic dipolar hard-sphere (DHS)
model—monodisperse hard spheres of diameter d,
possessing a point dipole moment m in their centers—
highlighted the importance of the competition between
rings and chains in the low-density low-T regime
[28,29]. Similar results for patchy colloids were obtained
in Ref. [30].
In this Letter, we present a novel theoretical analysis of

the behavior of the initial susceptibility. Our study is
motivated by the availability of accurate simulation data,
providing for the first time access to the strong coupling
regime in equilibrium, as well as by the evidence of the
ring-chain structural crossovers taking place at low T.
Specifically, we develop a parameter-free combined
mean field and density functional theory for the chain-
ring equilibrium at low densities in DHSs and a
parameter-free model for the susceptibility of chains and
rings of fixed size. We then combine these two results to
evaluate �ðTÞ at low densities. We test the theoretical
predictions, step by step, with previous and novel
Monte Carlo results. Both theory and simulations reveal
the existence of a maximum in �ðTÞ. The agreement
between theory and simulations is remarkable at all steps
and provides final evidence that the �maximum originates
from the appearance of magnetically inert aggregates (the
rings) leading to an effective reduction of the magnetically
responsive fraction of particles. This mechanism comes
into play when both the temperature and the density are
very low.
Numerical methods.—We employ Monte Carlo simula-

tions in the canonical ensemble to investigate dilute DHS
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systems with volume fractions ’ ¼ Nv=V � 1, where
N ¼ 5000 is the number of particles, v � �d3=6 is the
volume of a particle, and V is the volume of the system. For
simplicity, we set d ¼ 1, m ¼ 1, and Boltzmann constant
kB ¼ 1. The implementation of advanced volume-bias
techniques [28,31] allows us to equilibrate the system
down to T� ¼ 0:125 (in units of m2=d3). To accurately
take into account dipole-dipole interactions we used Ewald
summation. The total dipole moment auto-correlation
function was used to check statistical independence of
measurements. It allowed us to reach error bars on the
order of symbol size in all figures. For further details on
the simulation approach, see Ref. [28]. To partition parti-
cles into clusters, we employ a mixed distance-energy
criterion: two particles are considered as bonded if their
interaction energy is negative and if their relative distance
is smaller than rb ¼ 1:3 [29]. A chain contains two single-
bonded particles connected by particles having two neigh-
bors. If all particles in a cluster have only two neighbors
then the cluster is labelled as a ring. Any other kind of
aggregates is labelled as a branched cluster. The fraction
of particles in branched structures is negligible in the
investigated volume fraction range.

Theory.—The key hypothesis of our work is the assump-
tion that the decrease of � at low T arises from the
progressive thermodynamic stabilization of the ring struc-
tures, whose magnetic response we consider to be negli-
gible. We foresee a progressive evolution of � on cooling
which starts from the independent particles value at high T,
and increases anomalously due to the formation of linear
chains at smaller T to pass through a maximum when the
equilibrium between chains and rings starts to favor closed
structures. We start by developing a theoretical approach
to model the density and T dependence of the ratio of
particles in rings and chains, appropriate for the case of
low densities. We write the free energy density for an
ideal mixture of dipolar chains and rings as [30,32–34]

F½fgng; ffng�
VkBT

¼ X1

n¼1

gn ln
gnv

eQn

þ X1

n¼5

fn ln
fnv

eWn

; (1)

where gn and fn are the equilibrium volume fractions of
chains and rings, respectively; Qn and Wn denote the
corresponding (normalized by V=v) partition functions of
an n-particle chain and ring. The free-energy functional
[Eq. (1)] has to be minimized with respect to the distribu-
tions fgng and ffng preserving ’,

X1

n¼1

gnnþ X1

n¼5

fnn ¼ ’

v
: (2)

Guided by ground state calculations [35] and numerical
results [28,29,36], we assume that rings smaller than five
particles do not form, so that the ring contribution in
Eq. (2) starts from n ¼ 5. For low temperature, a simple
nearest-neighbor approach would fail to describe the

long-range magnetic dipole-dipole interaction between
the particles belonging to one cluster. As discussed in
detail in the Supplemental Material [37], the partition
functions of a chain and of a ring can be approximated as

QnðT�Þ ¼ qCðnÞ; WnðT�Þ ¼ QnðT�Þ q
RðnÞ�CðnÞ

n3�þ1
; (3)

where

RðnÞ ¼ n

2
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�
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sin3ð�kn Þ
þ Rðnþ1Þ=2

!
;

CðnÞ ¼ Xn

k¼1

n� k

k3
� n�ð3Þ � �2

6
; ðn � 4Þ;

(4)

with �ð3Þ denoting the Riemann zeta function of three;
Rðnþ1Þ=2 stands for the residual of division, and ½�� has the
meaning of the integer part of the expression in the brack-
ets. The low-T dimer partition function q (note that
Cð2Þ ¼ 1 and hence Q2ðT�Þ ¼ q), derived first by
de Gennes and Pincus [38], is

qðT�Þ ¼ T�3

3
exp

�
2

T�

�
: (5)

In Eq. (3), � ¼ 0:588 is the self-avoiding random walk
exponent. The term 1=n3�þ1 inWnðT�Þ captures the differ-
ence in entropy between chains and rings arising from the
n ways of opening a ring to form a chain; the difference
between the numbers of self-avoiding paths of chains and
rings is proportional to n3� [39]. Finally, minimizing
Eq. (1), one obtains compact expressions for gn and fn,

gn ¼ 1

v
Qnp

n; fn ¼ 1

v
Wnp

n: (6)

Here, p, the Lagrange multiplier to be found from Eq. (2),
has the meaning of activity. Figure 1 shows the resulting
(parameter-free) prediction for the fractions of particles
aggregated in rings and in chains and compares them to
corresponding Monte Carlo (MC) results. The redistribu-
tion of particles between chains and rings becomes vivid.
For all investigated volume fractions, once T� � 0:12, an
almost complete crossover from chains to rings takes
place.
In order to estimate the ability of the theory to predict

the cluster size distribution of rings and chains at different
T�, we plot in Fig. 2 the ratio fn=gn as a function of n. For
values of the ratio fn=gn greater (smaller) than 1, rings are
more (less) abundant than chains of the same size. The
ratio fn=gn coincides with Wn=Qn [see Eq. (6)] showing
that the equilibrium between chains and rings is controlled
by the subtle interplay between the energetic gain of
forming one additional bond and by the entropic penalty
of joining the two chain ends when converting a chain into
a ring. The numerical results for this ratio, displayed in
Fig. 2, show a small dependence on density at fixed
temperature (for the low densities simulated), supporting
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the density independence of the ratio Wn=Qn assumed in
the theory. Both MC results and theoretical predictions
show that for T� > 0:155, fn=gn remains smaller than
unity for all n. For T� < 0:155, on the other hand, the
number of intermediately sized rings becomes larger than

that of chains. The position of the maximum (nmax) of the
ratio fn=gn depends on T� and it can be written as
nmaxðT�Þ ¼ 2� lnqðT�Þ=ð3�þ 1Þ. We find 10<nmax<18,
when 0:125< T� < 0:17, in good agreement with simula-
tion data. The second step in our study is the formulation of
a parameter-free model for the susceptibility of the system
as a sum over the contributions of chains and rings of
fixed size n. We assume that the susceptibility of rings
is always zero, due to the fact that their average total dipole
moment vanishes. Simulation data provide a confirmation
that the magnetic response of a ring is several orders of
magnitude smaller than that of a chain of the same size.
We write the total initial magnetic susceptibility of the

low density DHS restricting only to the chains contribution
as [40]

�ðT�Þ ¼ 8v

T�

 
1þ �C

L

3

!
X1

n¼1

gnhm2
ni; (7)

hm2
ni ¼ nþ 2

K

ð1� KÞ2 ðn� 1þ Kn � nKÞ: (8)

Here, �C
L ¼ 8’C=T

� is the Langevin susceptibility of all
particles aggregated in chains, whose volume fraction is

’C, at T
�. The term ð1þ �C

L

3 Þ is the mean field contribution

modeling long range interactions (for the derivation, see
Ref. [41]). The final sum contains the chain contribution,
with hm2

ni having the meaning of a dimensionless mean-
squared dipole moment of a chain made of n DHS parti-
cles. The expression for hm2

ni in Eq. (8) has been derived in
Ref. [40]. For DHS particles, the dipolar correlation coef-
ficient K assumes the simple form

KðT�Þ ¼ cothð1=2T�Þ � 2T�: (9)

Equation (7) assumes that � can be written as a sum
over the contributions to the susceptibility of each chain
of size n,

�cðn; T�Þ ¼ 8

 
1þ �C

L

3

!
hm2

ni=T�: (10)

Once more, simulations can be utilized to provide a close
comparison, at the single chain level, of the quality of the
theoretical predictions. We, thus, partition particles into
clusters and select all chains according to their length. The
corresponding value of �cðn; T�Þ is then evaluated averag-
ing over all chains with the same n by evaluating the
fluctuation-dissipation relationship

�cðn; T�Þ ¼ 4�

3

d3

VT� ðhM2
ni � hMni2Þ; (11)

where Mn is the dimensionless total dipole moment of an
n-particle chain, and hi indicates an average over all chains
with the same length n
The results, plotted in Fig. 3, demonstrate a very good

agreement between theory and simulation even at the level

FIG. 2 (color online). Ratio fn=gn as a function of n at differ-
ent T� and ’. Log scale is used along the ordinate axis. From the
top to the bottom the reduced temperature increases: T� ¼
0:125; 0.140; 0.155; 0.170. Theoretical results of Eq. (6) are
plotted with solid lines and are ’ independent. Simulation data
are presented with symbols: circles, ’ ¼ 3:67	 10�3; squares,
’ ¼ 2:62	 10�4; and triangles, ’ ¼ 3:67	 10�5. For T� ¼
0:155, 0.170 the amount of rings observed in simulations is
not sufficient to provide reliable statistics. The rings are more
probable than chains of a corresponding size above the horizon-
tal dashed-dotted line fn=gn ¼ 1.

FIG. 1 (color online). Fractions of particles aggregated in rings
and chains as a function of T� for two different densities.
Simulation data are presented with symbols: open squares,
fraction of particles in chains; filled squares, fraction of particles
in rings (’ ¼ 2:62	 10�4); open diamonds, chains; and filled
diamonds, rings (’ ¼ 5:24	 10�5). Theoretical results for the
same densities are plotted with lines: solid lines, chains; and
dashed lines, rings. In both cases, there is an evident redistrib-
ution of particles from chains to rings in the narrow range 0:13<
T� < 0:15. In the simulations, a small fraction of branched
structures is detected, and, hence, the sum of the fraction of
particles in chains and rings does not always sum up to one.
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of a single chain. It is worth noting that the magnetic
response of an n-particle chain is the same for all chains
of the same size, independently from the volume fraction
employed in the simulation. It means that the intercluster
correlations play a negligible part for the parameters
studied here. This validates our theoretical assumption to
model the system as a chain-ring ideal mixture, Eq. (1).
Finally, we compare the theoretical prediction for the
initial susceptibility of the DHS systems with the analo-
gous quantity computed from the MC configurations, eval-
uated from the fluctuation-dissipation relationship. The
comparison is reported in Fig. 4. For high temperature, �
obeys a Curie-type 1=T� law and, depending on particle
density, might be well described by the modified mean-
field approach [41]. In Fig. 4, the values of ’ are so low
that even the Langevin one-particle model with the initial
susceptibility �L ¼ 8’=T� appears to be sufficient.
However, in Fig. 4, both MC and theoretical results show
that � has a maximum for 0:12< T� < 0:15, after which
the curves rapidly decrease for all densities. The decrease
is so strong, that the initial susceptibility becomes lower
than �L. Dashed lines in Fig. 4 show how strong the
increase of theoretically predicted initial magnetic suscep-
tibility could have been, if only chains had formed in the
system.

Conclusions.—Our study demonstrates that the nonmo-
notonic temperature dependence of � in the low-density
DHS system is indeed triggered by ring formation. The
drastic effect is caused by the exclusion of a significant
fraction of particles from the collective magnetic response.
One might consider the excluded particles to form
‘‘magnetic holes’’ in the system and as such to reduce
the density of ‘‘active’’ magnetic dipoles. In the specific

case of low-density DHSs the magnetic hole is a ring made
of dipolar particles, as the average magnetic moment of a
ring is zero. The appearance of rings leads to an effective
reduction of the magnetically responsive fraction of
particles. This mechanism comes into play when both
the temperature and the density are very low. This explains
why, in previous studies of macroscopic properties, the
signature of ring formation in DHS systems has not been
observed [10,12,15,18,20,21]. For higher densities, the
microstructure of the DHS system becomes more complex
and simulation studies [28,29] have shown the presence
of branched structures which span the entire system. This
‘‘gelation’’-type crossover, giving rise to structures
which could also be characterized by closed magnetic
dipole moments, might also lead to the aforementioned
effective exclusion of particles and result in the drop of
the magnetic susceptibility, also at large densities. We are
confident that the presented theoretical predictions will
motivate further experiments at low densities and tempera-
tures (at which the carrier might still be liquid [7,8]).
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FIG. 3 (color online). Initial magnetic susceptibility of a single
chain composed of n particles at T� ¼ 0:155. Log scale is used
along the ordinate axis. Theoretical result of Eq. (10) is plotted
with the solid line. Simulation data are presented with symbols:
circles, ’ ¼ 3:67	 10�3; squares, ’ ¼ 2:62	 10�4; dia-
monds, ’ ¼ 5:24	 10�5; triangles, ’ ¼ 3:67	 10�5; and
crosses, ’ ¼ 5:24	 10�6.

FIG. 4 (color online). Initial magnetic susceptibility as a func-
tion of reduced temperature T� for various volume fractions. Log
scale is used along both axes. Theoretical results of Eq. (7) are
plotted with solid lines. Simulation data are presented with
symbols: circles, ’ ¼ 3:67	 10�3; squares, ’ ¼ 2:62	 10�4;
diamonds, ’ ¼ 5:24	 10�5; triangles, ’ ¼ 3:67	 10�5; and
crosses, ’ ¼ 5:24	 10�6. In all cases, there is a maximum of �,
which slightly shifts towards lower T� with decreasing ’.
Dashed lines: initial magnetic susceptibility for the same range
of parameters obtained in theory assuming that only chains
(no rings) can form in the system.
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and A. P. Philipse, Phys. Rev. Lett. 96, 037203 (2006).

[28] L. Rovigatti, J. Russo, and F. Sciortino, Phys. Rev. Lett.
107, 237801 (2011).

[29] L. Rovigatti, J. Russo, and F. Sciortino, Soft Matter 8,
6310 (2012).

[30] J.M. Tavares, L. Rovigatti, and F. Sciortino, J. Chem.
Phys. 137, 044901 (2012).

[31] B. Chen and J. I. Siepmann, J. Phys. Chem. B 105, 11275
(2001).

[32] R. P. Sear and G. Jackson, Phys. Rev. E 50, 386 (1994).
[33] A. Avlund, G. Kontogeorgis, and W. Chapman, Mol. Phys.

109, 1759 (2011).
[34] A. Galindo, S. Burton, G. Jackson, D. Visco, and D.A.

Kofke, Mol. Phys. 100, 2241 (2002).
[35] T.A. Prokopieva, V. A. Danilov, S. S. Kantorovich, and

C. Holm, Phys. Rev. E 80, 031404 (2009).
[36] S. Kantorovich, J. J. Cerdà, and C. Holm, Phys. Chem.
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