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We examine the zero-temperature phase diagram of the two-dimensional Levin-Wen string-net model

with Fibonacci anyons in the presence of competing interactions. Combining high-order series expansions

around three exactly solvable points and exact diagonalizations, we find that the non-Abelian doubled

Fibonacci topological phase is separated from two nontopological phases by different second-order

quantum critical points, the positions of which are computed accurately. These trivial phases are separated

by a first-order transition occurring at a fourth exactly solvable point where the ground-state manifold is

infinitely many degenerate. The evaluation of critical exponents suggests unusual universality classes.
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Quantum phases of matter are often well described by
local order parameters and Landau-Ginzburg symmetry-
breaking theory is an efficient tool to analyze transitions
between these phases. However, in the late 1980s, a new
class of phases that cannot be understood in terms of local
symmetries has emerged in the context of high-temperature
superconductivity [1–3]. These phases, dubbed topological
because of their sensitivity to the system topology, have
stimulated many studies in different domains (see Ref. [4]
for a recent review). One of the most intriguing properties of
topologically ordered phases is that they are robust against
local (not too strong) perturbations [5,6]. This stability
makes them especially appealing for quantum computation
[7] as well as good candidates for quantum memories [8].
Several experiments have been proposed to realize the so-
called topologically protected qubits [9]. In this perspective,
a theoretical characterization of the robustness of topologi-
cal phases under strong perturbations as well as the nature of
the phase transitions signaling their breakdown is undoubt-
edly an important issue. Thanks to recently proposed exactly
solvable lattice models realizing various topological phases
of matter [5,10,11], this program has been undertaken for
several models [12–25].

The main purpose of this Letter is to go one step beyond,
by studying the phase diagram of a paradigmatic 2D non-
Abelian model. We consider the Levin-Wen model [11] on
the honeycomb lattice with Fibonacci anyons (the golden
string-net model) in the presence of the same perturbation
as the one introduced in Ref. [20]. We determine the
extension of the doubled Fibonacci (DFib) topological
phase and show that it is separated from two other non-
topological phases via second-order transitions that are
analyzed in detail. Hilbert space—Following the Levin-
Wen construction, we consider a honeycomb lattice with
anyonic degrees of freedom living on its edges. In the
Fibonacci string-net model, these local (microscopic)

degrees of freedom can be in two different states j0i or
j1i. The Hilbert space H is restricted to states that satisfy
the so-called branching rules stemming from the non-
Abelian fusion rules

0� a ¼ a� 0 ¼ a for a 2 f0; 1g; (1)

1� 1 ¼ 0þ 1: (2)

At each vertex of the honeycomb lattice, the fusion rules
must not be violated; i.e., if one edge is in state j1i, then
at least one of the two other edges must be in the same
state. For an arbitrary trivalent graph with Nv vertices, the
dimension of the Hilbert space is then given by

dimH ¼ ð1þ ’2ÞNv=2 þ ð1þ ’�2ÞNv=2; (3)

where ’ ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden ratio (see, e.g.,
Ref. [26]).
Model.—We study the following Hamiltonian [20],

H ¼ �Jp
X
p

��ðpÞ;0 � Je
X
e

�lðeÞ;0: (4)

The first term is the string-net Hamiltonian introduced by
Levin and Wen [11]. It involves the projector ��ðpÞ;0 onto
states with no flux �ðpÞ through plaquette p [11,20]. The
second term is diagonal in the basis introduced above
since �lðeÞ;0 is the projector onto state j0i on edge e.
To help the reader to grasp the physical content of this

Hamiltonian, let us mention what happens if one replaces
Eq. (2) by the simpler Abelian Z2 fusion rule 1� 1 ¼ 0.
The model then becomes Kitaev’s toric code [5] on the
honeycomb lattice, restricted to the charge-free sector
(because of the branching rules), in the presence of a
magnetic field Je in the x direction. Indeed, one can write
the Hamiltonian in terms of Pauli matrices, with ��ðpÞ;0 ¼
ð1þQ

e2p�
z
eÞ=2 and �lðeÞ;0 ¼ ð1þ �x

eÞ=2. Identifying
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plaquette fluxes with spin 1=2 variables as done in
Refs. [12,13] for the square lattice, the Hamiltonian can
further be mapped onto the transverse-field Ising model on
the triangular lattice (of plaquettes), with coupling Je and
transverse-field Jp.

Limiting cases.—For convenience, let us set Jp ¼ cos�

and Je ¼ sin�. To our knowledge, contrary to the ladder
geometry studied in Ref. [20], the Hamiltonian H is
exactly solvable only at the four points for which � is a
multiple of �=2. In the following, we discuss the low-
energy spectrum of H as well as the corresponding phases
around these special points and give some arguments in
favor of transitions between them.

(a) � ¼ 0: For Jp > 0 and Je ¼ 0, the model reduces to

the golden string-net model. Ground states jgi are flux-free
states satisfying ��ðpÞ;0jgi ¼ jgi for all p and thus have

an energy per plaquette e0 ¼ E0=Np ¼ �1 (Np being the

number of plaquettes). Their degeneracy depends on the
system topology which is the most salient property of a
topological phase. For the Fibonacci string-net model
on any trivalent graph, the ground state is unique on a
sphere [27] whereas it is fourfold degenerate on a torus.
Interestingly, one can also compute the degeneracy of the
kth excited states (with energy Ek ¼ E0 þ k)

Dk ¼
Np

k

 !
ðpF2

k�1 þ qF2
k þ rFkFk�1Þ; (5)

where we introduced the famous Fibonacci sequence
defined for any integer n by Fnþ1 ¼ Fn þ Fn�1,
with F�1 ¼ 1 and F0 ¼ 0. The integers (p, q, r) depend
on the surface considered. For instance, one has
ðp;q;rÞ¼ ð1;0;0Þ on a sphere whereas ðp; q; rÞ ¼ ð4; 1; 4Þ
on a torus. Equation (5) shows that for the Fibonacci
theory, an odd number of excitations can exist on a
compact surface contrary to the charge-free toric code
discussed above where fluxes are always created and anni-
hilated by pairs. Note that the binomial coefficient simply
arises from the different ways to choose k plaquettes
carrying the flux excitations among Np.

Products of two Fk’s stem from the fact that the
‘‘emergent’’ flux excitations are not the microscopic
Fibonacci anyons but are achiral combinations of two
Fibonacci anyons (details will be given in Ref. [28]). The
non-Abelian topological phase in the vicinity of � ¼ 0 is
described by a DFib theory [11,29–33]. Excitations have a
trivial topological spin [11] and can fuse to the vacuum
(also called trivial particle) [34]. As such, they can also be
considered as bosons [35] and hence condense.

(b) � ¼ �: For Je ¼ 0 and Jp < 0, the low-energy spec-

trum is very different. Indeed, in this case, the ground-state
manifold isDNp

-fold degenerate and spanned by all states

jgi satisfying ��ðpÞ;0jgi ¼ 0 for all p. As discussed above,

this degeneracy depends on the topology through its indi-
ces (p, q, r) so that one might be tempted to consider

the system as topologically ordered. However, the local
operator

P
e�lðeÞ;0 couples the ground states and splits the

degeneracy for any Je � 0. As a consequence, the system
cannot be considered as topologically ordered [36].
Owing to this huge degeneracy, we have not been able to

analyze the vicinity of this point. However, numerical
results obtained by exact diagonalizations clearly show
that (i) the degeneracy is lifted as soon as the coupling
Je � 0 and (ii) the ground state for � ¼ �� is unique and
adiabatically connected to the polarized ground states
found at � ¼ �=2 and 3�=2, respectively, (see discussion
below). This result is in stark contrast with the scenario
described in Ref. [20] on the ladder where a gapless phase
is observed for � 2 ½�; 3�=2�. In addition, as can be seen
in Fig. 3 (central panel), we found a jump in @�e0 at � ¼ �
(for all system sizes) indicating that the two gapped phases
(� ¼ �þ and � ¼ ��) are separated by a first-order phase
transition.
(c) � ¼ �=2: For Jp ¼ 0, the HamiltonianH is diagonal

in the canonical basis of states satisfying the branching
rules. For Je > 0, the ground state is unique whatever the
topology and corresponds to the fully polarized state where
all edges are in the state j0i (with eigenenergy E0 ¼ �Ne,
where Ne is the total number of edges). First excited states
are obtained by flipping six links around one hexagon.
They behave as trivial hard-core bosons that become
dynamical when the coupling Jp is switched on. Thus,

near � ¼ �=2, the system is gapped but not topologically
ordered, making the occurrence of a phase transition in
the interval [0, �=2] compulsory.
(d) � ¼ 3�=2: For Je < 0 and Jp ¼ 0, the Hamiltonian

is also diagonal and the unique ground state is the fully
polarized state where all edges are in the states j1i (e0¼0).
Note that such a state would be forbidden by the Abelian
Z2 fusion rules. First excited states are obtained from the
ground state by flipping a single link. As previously, these
localized excitations are trivial hard-core bosons that
become mobile when Jp � 0 so that one expects a phase

transition in the interval [3�=2, 2�].
Phase diagram.—To determine the zero-temperature

phase diagram, we combined two different approaches.
First, we performed high-order series expansions in the
thermodynamical limit by means of several methods
[37–39], around the exactly solvable points � ¼ 0, �=2,
and 3�=2 described above. This yields the ground-state
energy per plaquette e0 as well as the quasiparticle disper-
sion from which the low-energy gap � can be extracted.
Lengthy expressions of these series expansions can be
found in Ref. [40]. This method allows one to accurately
compute the critical couplings for which the gap vanishes.
These points are associated to second-order transitions but
might not be relevant if first-order transitions are present
(see Refs. [17,19] for details about this issue in a similar
context). Second, we perform exact diagonalizations (ED)
for lattices with periodic boundary conditions. As can be

PRL 110, 147203 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

147203-2



seen in Figs. 1 and 2, series expansions and ED data are
in very good agreement except in the vicinity of the tran-
sition points where finite-order and finite-size effects are
important.

Combining these two methods (ED and series expan-
sions) we found that the DFib topological phase near � ¼ 0
ranges from �c2 ’ �0:63ð¼ 5:65Þ to �c1 ’ 0:255. As we
shall now argue, we associate these two points to second-
order transitions. The first piece of evidence pleading in
favor of such a scenario follows from ED and is the
behavior of @2�e0 that clearly decreases with the system

size near these points (see left and right panels in Fig. 3). In
addition, the position of the low-energy gap minimum as
well as the topological degeneracy splitting shown in Fig. 2
lie in the same region as the position of the minimum of
@2�e0. Let us also note that we did not find any relevant level

crossing in the excitation spectrum that could lead to a
first-order transition. The second argument comes from the
high-order perturbation theory. As can be seen in Ref. [40],
the series behave very differently for positive and negative
Je. So, let us first discuss the most favorable case Je > 0
(Jp > 0). A close inspection of the series expansion near

� ¼ 0 and � ¼ �=2 reveals three important features:
(i) the sign of each coefficient is the same in all series;
(ii) series of the ground-state energy intersect in two order-
dependent points—the possible merging of these points, in
the infinite-order limit, being a signal of a second-order
transition since series then have to be tangential at the
critical point; (iii) series of the gap intersect in a unique
(still order dependent) point; see, e.g., the left part of
Fig. 2. We emphasize that the value of the gap at this
crossing point decreases when the order increases and
eventually vanishes in the infinite-order limit. In Fig. 4,
we plotted the position of these crossing points as a func-
tion of the (inverse) order as well as the position of the
minimum of the low-energy gap and of @2�e0 as a function
of N�1

p computed from ED results. As can be seen, all data

seem to converge to the same point �c1 2 ½0:255; 0:256� in
the infinite-order (size) limit, providing a smoking-gun
evidence of a second-order transition.
Unfortunately, the case Je < 0 (Jp > 0) is more involved

for three reasons. First, series expansions of e0 and � in
this region have alternate signs so that the previous criteria
based on crossing points cannot be used. Second, contrary
to the case Je > 0, the momentum minimizing the disper-
sion of the low-energy quasiparticles is not at the � point
and only belongs to the reciprocal lattice of 3p� 3q
systems, ðp; qÞ 2 N2. The only system with such charac-
teristics considered in this study is the 3� 3 lattice so that
one cannot perform any reliable analysis from ED data

FIG. 1 (color online). Ground-state energy per plaquette
e0 ¼ E0=Np as a function of �. ED results (black line) for

Np ¼ ffiffiffiffiffiffi
13

p � ffiffiffiffiffiffi
13

p
plaquettes (see inset) are in excellent agree-

ment with typical Padé approximants (white lines) computed
from high-order series expansions [40].

FIG. 2 (color online). First four excitation energies obtained
from the ED results (black lines) for Np ¼ 3� 3 plaquettes

compared with the low-energy gap computed from high-order
bare series expansions (white lines) [40]. The topological degen-
eracy splitting is clearly observed in the vicinity of the critical
points. For symmetry reasons, this splitting is only partial for the
system considered here (see inset).

FIG. 3 (color online). ED results for Np ¼ 2� 2 (dotted line),
3� 3 (dashed line), and

ffiffiffiffiffiffi
13

p � ffiffiffiffiffiffi
13

p
(solid line) plaquettes. Left

and right panels: @2�e0 decreases with the system size indicating

second-order transitions at �c1 and �c2. Central panel: @�e0 dis-

plays a clear jump at � ¼ � indicating a first-order transition.
Dips indicated by arrows in the DFib topological phase are due
to (irrelevant and avoided) level crossings between the four
lowest-energy levels that become degenerate in the thermody-
namical limit on a torus.
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near �c2. Third, because of the nature of the low-energy
states, maximum orders reachable around � ¼ 3�=2 are
smaller than around � ¼ �=2 [40]. Nevertheless, using the
gap series expansion around � ¼ 0, it is possible to
perform (dlogPadé) resummations that lead to a position
of the critical point �c2 2 ½5:61; 5:62�. Note that the same
methods for Je > 0 would lead to �c1 2 ½0:259; 0:261�.
This value differs from the one proposed above only by a
few percent and it overestimates the extension of the
topological DFib phase. Consequently, as we have no
alternative approach, we roughly estimate that �c2 lies in
the range [5.6, 5.7].

Critical exponents.—The obvious question that arises
next concerns universality classes associated to the tran-
sition points. In the absence of a local order parameter, the
only meaningful critical exponents for topological phase
transitions are those associated to the spectrum. Let us
remind that for a second-order transition, the gap vanishes,
at large linear system size L and at the critical point, as
�� L�z where z is the dynamical exponent. In the ther-
modynamical limit, one further has �� j�� �cjz� and
@2�e0 � j�� �cj��.

As already explained, ED are only useful quantitatively
around �c1 although restricted to systems of small sizes.
Using the gap data, we find z ’ 1:2. A finite-size analysis
of e0 yields a surprisingly good data collapse for the 3� 3

and
ffiffiffiffiffiffi
13

p � ffiffiffiffiffiffi
13

p
systems, with �c1 ’ 0:255, z ’ 1, � ’ 0:4

and � ’ 0:8 [28]. The rather large value of � might be
responsible for the quality of the data collapse. We empha-
size that these values are compatible with the previous
estimate of �c1 as well as with the hyperscaling relation
2� � ¼ �ð2þ zÞ. The above exponents are furthermore

in agreement with dlogPadé resummations of the series
expansion around � ¼ 0 which yield z� 2 ½0:4; 0:44�. We
discard results from resummations around � ¼ �=2
because these results are not as well converged, since for
a given order, clusters needed to compute series around this
point are twice as small as those needed around � ¼ 0.
Note that as usual, extracting � from series of e0 does not
give any conclusive result. Concerning the critical behavior
at �c2, we only use dlogPadé resummation around � ¼ 0
and we obtain a gap exponent z� 2 ½0:56; 0:58�.
Outlook.—It is difficult to provide some error bars

concerning these values. To estimate these errors, we per-
formed similar series expansion analysis for the Fibonacci
ladder (for which exponents are known exactly [20]) and
for the 2D Z2 string-net model (having either Ising or XY
transitions depending on the sign of Je). The results we
obtained [28] lead us to conclude that critical exponents
are to be considered with a precision of about 10%. As a
conclusion, we found two different second-order transi-
tions with universality classes that, to the best of our
knowledge, are as yet unknown in the context of topologi-
cal phase transitions. Let us mention that a critical DFib
wave function has been proposed [41] but its relevance for
the present problem requires further studies [28].
To gain more understanding about these transitions,

different approaches could be used, e.g., variational meth-
ods or Monte Carlo simulations, although a naive imple-
mentation of the latter should suffer from the sign problem.
It would also be worth studying similar models with a
DFib phase [41,42] as well as different topological phases.
Finally, another important issue concerns transitions
between two distinct topological phases [35]. Given the
ubiquity of Fibonacci anyons in many different physics
domain such as topological quantum computation,
condensed matter, or atomic physics [43], we hope that
the present work will stimulate such investigations.
We thank K. Coester, B. Douçot, M. Kamfor, and J.-B.

Zuber for fruitful discussions. K. P. S. acknowledges ESF
and EuroHorcs for funding through his EURYI.
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