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Exciton bound states in solids between electrons and holes are predicted to form a superfluid at high

temperatures. We show that by employing atomically thin crystals such as a pair of adjacent bilayer

graphene sheets, equilibrium superfluidity of electron-hole pairs should be achievable for the first time.

The transition temperatures are well above liquid helium temperatures. Because the sample parameters

needed for the device have already been attained in similar graphene devices, our work suggests a new

route toward realizing high-temperature superfluidity in existing quality graphene samples.
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It is proving a challenging task to observe superfluidity
in a semiconductor electron-hole double quantum well
system. Despite long-standing theoretical predictions
[1,2] and significant experimental efforts [3–5], it is only
very recently that Bose-Einstein condensation of excitons
has been observed in this system [6]. The transition tem-
perature was low, �1 K, and the condensate was nonequi-
librium because of the fast recombination of the
photoexcited excitons. Major obstacles blocking experi-
mental realization of equilibrium superfluidity in these
systems include the following: (a) In most semiconductors,
the electron and hole energy bands are badly mismatched.
In GaAs not only do the effective masses differ by a factor
of 5, but the holes have highly nonparabolic energy dis-
persion and spin- 32 characteristics [7]. (b) The large band

gap in GaAs means a bias of 1.5 eV needs to be applied
across the dielectric barrier. This leads to a huge electric
field across the barrier making it extremely hard to fabri-
cate barriers thin enough for the electrons and holes to bind
together while avoiding leakage between the layers. The
formation of excitons is exponentially suppressed once the
thickness DB of the barrier separating the two quantum
wells exceeds the effective Bohr radius a?0 [1] (13 nm for

GaAs). With the narrowest GaAs quantum wells widths
DW � 20 nm and barrier thicknesses DB * 10 nm to
avoid leakage, the minimum effective layer separation
Deh ’ DB þDW remains � a?0 [4].

An alternative system, two graphene monolayers of
electrons and holes separated by a dielectric barrier
(2MLG), has recently been proposed to observe this elu-
sive superfluid [8–10]. This system has some clear advan-
tages over the GaAs system. Graphene is a gapless
semiconductor with nearly identical conduction and va-
lence bands so the mismatch between the electron and hole
Fermi surfaces is almost eliminated. In addition, the avail-
ability of very thin dielectric barriers separating the two
monolayers makes the region with strong electron-hole
pairing effects easily attainable. A barrier thickness as

small as DB ’ 1 nm has already been demonstrated with
a hexagonal boron nitride (hBN) dielectric [11]. The bar-
rier can be made so thin for graphene both because there is
no need for a large bias between the electron and hole
layers, and also because hBN has a much larger band gap
(�5 eV) than the barrier between double quantum wells in
GaAs (�0:5 eV), allowing the barrier thickness to be
readily reduced without electrical leakage between the
layers.
However, there is a new obstacle with graphene associ-

ated with the linear single-particle energy dispersion
E�ðkÞ ¼ �@vFk. This makes it difficult to access the
region of strong interactions. Also, bound excitons do not
form because of the massless carriers [12]. The ratio rs ¼
hVCouli=EF is a useful measure of the importance of inter-
actions relative to kinetic energy. hVCouli ¼ ðe2=�Þ ffiffiffiffiffiffiffi

�n
p

is
the average Coulomb interaction energy, where n is the
charge carrier density and � is the dielectric constant. In
graphene the Fermi velocity vF � 106 ms�1 is indepen-
dent of n and the Fermi momentum for the spin- 12 carriers

in 2D is kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n=gv

p
, where gv ¼ 2 is the pseudospin

factor. The Fermi energy is then EF ¼ @vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n=gv

p
. This

makes rs ¼ e2=ð�@vFÞ & 1 for monolayer graphene, a
constant of order unity, while recent theory suggests that
an electron-hole superfluid can only occur at measurable
temperatures for rs > 2:3 in the 2MLG system [13]. Very
recent experiments have shown no evidence of superflu-
idity in this system despite achieving barrier thicknesses as
low as DB ¼ 1 nm [11]. This poses an exciting challenge:
can new experimentally realistic structures be designed
using atomically thin crystals that allow the transition to
a superfluid state?
We concentrate here on bilayer graphene because it has

been well characterized and exhibits extremely low levels
of disorder, but a number of other such crystals are possible
[14]. Our proposed system (2BLG) consists of a pair of
parallel bilayer graphene sheets (Fig. 1). The lower bilayer
sheet is an electron bilayer comprising two parallel, A-B
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stacked, closely coupled electron layers of graphene with
layer separation De ¼ 0:37 nm [15]. There is strong elec-
tron hopping between the two layers in the sheet. The
upper bilayer sheet is a hole bilayer consisting of two
A-B stacked hole layers, but is otherwise analogous to
the lower bilayer sheet with an identical layer separation
Dh ¼ De. The two bilayer sheets are separated by a hBN
insulating barrier of width DB to prevent tunneling
between the sheets. There are separate electrical contacts
to the two layers and a bias VBB can be applied between
them. The bias VBB and biases VTG and VBG on top and
bottom metal gates allow independent control over the
carrier density in each layer and can adjust the symmetry
of the electric field across the two sheets. By tuning the
three biases, a wide range of electron and hole densities can
be achieved.

Bilayer graphene eliminates the problems caused by the
linear dispersion of monolayer graphene because, over a
wide range of electron or hole densities, 1� 1011 < n<
4� 1012 cm�2, symmetrically biased graphene bilayers
behave as a zero gap semiconductor with a quadratic
dispersion around the Fermi level [16]: E�ðkÞ ’
�@

2k2=2m?. The effective mass is m? ’ ð0:03 to 0:05Þme,
depending on the carrier density [17]. At very high den-
sities n > 4� 1012 cm�2, E�ðkÞ crosses over to linear
behavior, but this density region lies in the weakly inter-
acting regime and is not of interest. At very low densities
n & nmin ¼ 1� 1011 cm�2 a trigonal warping of the
bands transforms the two quadratic bands into three sets
of Dirac-like linear bands [18]. This warping can be
reduced if necessary by applying an asymmetric bias
across each of the two bilayers, which will also open up
a gap separating the conduction and valence bands.

With quadratic energy dispersion, the Fermi energy in
the bilayer sheet depends linearly on density, EF ¼
�@2n=gvm

?, and so the parameter rs now has a density
dependence, rs ¼ ðe2=�Þðgvm?=@2Þð1= ffiffiffiffiffiffiffi

�n
p Þ. To experi-

mentally reach large rs and the strongly interacting regime

in the bilayer sheet, it is enough to decrease the carrier
density n with suitable gate voltages. In graphene sheets
the lowest density is restricted by the onset of electron
puddle formation, which occurs at densities below
1011 cm�2 in high quality graphene bilayers [11]. This
corresponds to rs ¼ 9 in the strongly interacting regime.
We know that Deh � a?0 ensures strong electron-hole

pairing. For a 2BLG system embedded in a hBN dielectric
with � ¼ 3 [19], setting m? ¼ m?

e ’ m?
h ¼ 0:04me and

using the reduced mass yields an effective Bohr radius
a?0 ¼ 8 nm. This is large compared with the thickness of

barriers already fabricated, DB ’ 1 nm ’ Deh [11].
Table I summarizes key physical parameters for three

systems in which superfluidity of spatially separated
electron-hole pairs has been predicted. For GaAs DQW,
although the EðkÞ is quadratic, the following experimental
restrictions make it difficult to access the region with
strong pairing effects: (a) The barriers are wide, Deh *
2a?0 [4,5], (b) the largest value of rs attained is rs ¼ 2, and
(c) the effective Rydberg (R) binding energy is small. For
2MLG, the barriers can be very thin, Deh � a?0 , but the
linear E�ðkÞ keeps the system in the weakly interacting
regime with rs < 1. What decisively favors the 2BLG
system is that the strong pairing regime is accessible in
current samples because of (a) the extremely thin barriers
DB � 1 nm and thin bilayer sheets De ¼ 0:37 nm, (b) the
ability to tune rs to large values in order to access strong
pairing, (c) the almost perfectly matched electron and hole
bands resulting from their near-equal effective masses,
leading to almost perfect particle hole symmetry and nest-
ing between circular Fermi surfaces, and (d) the larger R
than for GaAs.
We now calculate the superfluid energy gap and transi-

tion temperature to see whether a superfluid state can form
in the 2BLG systemwith realistic sample parameters and at
experimental attainable temperatures. For simplicity
we restrict DB >De and approximate the system by a
single layer of electrons ‘ ¼ e interacting with a single
layer of holes ‘ ¼ h. The quadratic energy bands are

��‘
k ¼ �@2k2=ð2m?

‘ Þ ��‘, where the band index � ¼ 1
and �1 for the upper and lower bands and �‘ is the
chemical potential. We make a standard transformation

TABLE I. Parameters for 2BLG, 2MLG, and electron-hole
GaAs double quantum well (GaAs DQW) systems. For a?0 and

R we use the reduced mass. Deh is minimum effective layer
separation. r0 and rs are maximum particle spacing and maxi-
mum rs experimentally attained.

System � a?0 R Deh (nm) r0 (nm) Deh=a
?
0 rs

2BLG 3 8 nm 30 meV 1 18 0.1 9

2MLG 3 � � �a � � �a 1 18 � � � 0.5

GaAs

DQW
13 13 nm 4.5 meV 25 23 2 2

aLocalized excitons do not form in 2MLG [12].

FIG. 1 (color online). Spatially separated electron-hole
system (2BLG) with electrons in one graphene bilayer sheet
separated by a hBN dielectric barrier from holes in a second
graphene bilayer sheet. Top and bottom metal gates control the
densities.
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to positively charged particles for the holes. The effective
Hamiltonian is

H ¼ X
‘k�

��‘
k c�‘k

yc�‘k

þX
qk�
k0�0

Veh
k�k0c

�e
kþðq=2Þ

y c�h�kþðq=2Þ
y c�

0e
k0þðq=2Þc

�0h
�k0þðq=2Þ;

(1)

where c�‘k
y and c�‘k are creation and destruction operators

for charge carriers in layer ‘ and band �. Spin indices are
implicit. Veh

k�k0 is the static screened electron-hole

interaction.
A mean-field description is applicable on both the weak-

coupling and strong-coupling sides of the BCS-BEC cross-
over for conventional pairing systems [20]. The mean-field
equations at temperature T for �‘ and the momentum-
dependent gap function ��

k are

��
kðTÞ ¼ �X

k0�0

1

2
Veh
k�k0

��0
k0

2E�0
k0
½1� fðE�0ðþÞ

k0 Þ � fðE�0ð�Þ
k0 Þ	;

(2)

nðehÞðTÞ ¼ 2gv
X
k�

½ðu�kÞ2fðE�ð�Þ
k Þ þ ðv�

kÞ2½1� fðE�ð�Þ
k Þ		:

(3)

E�ð�Þ
k ¼E�

k�1
2ð��e

k ���h
k Þ, E�

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 ð��e

k þ ��h
k Þ2 þ��

k
2

q
,

and fðEÞ is the Fermi distribution function. Since we are
in the strong coupling regime, we retain only the s-wave
harmonic in the graphene geometrical form factor [13].

We calculate the static screened Veh
q ðTÞ within the RPA,

Veh
q ðTÞ ¼ vqe

�qDeh

1� 2vq�0ðq; TÞ þ v2
q�

2
0ðq; TÞ½1� e�2qDeh	 ;

(4)

where vq ¼ �2�e2=ð�qÞ is the unscreened Coulomb in-

teraction. �0ðq; TÞ ¼ �ðnÞ
0 ðq; TÞ þ�ðaÞ

0 ðq; TÞ is the sum

of the normal and anomalous polarizabilities of a graphene
bilayer sheet, defined in Eqs. (6) and (7) of the
Supplemental Material [21].
There has been considerable discussion on the effect of

screening on superfluidity in electron-hole systems.
Screening weakens the interactions that drive the super-
fluid but there is an important subtlety: the appearance of
even a small superfluid gap in the excitation energy spec-
trum would completely suppress small momentum transfer
screening [10,13,22]. In the 2MLG system, screening sup-
presses superfluidity for all physically accessible parame-
ters [13], but in the 2BLG system the interactions are
stronger, leading to more localized pairs, and this can
further reduce the effectiveness of screening. Only full
calculations can reveal whether the reduction is sufficiently
great to allow onset of high-Tc superfluidity, but the ex-
perimental observation in Ref. [6] of Bose-Einstein con-
densation of dilute electrons and holes in GaAs shows that
screening does not invariably suppress superfluidity.
Moreover, the fact that the measured transition tempera-
tures in Ref. [6] are consistent with mean-field calculations
using unscreened Coulomb interactions demonstrates that
superfluidity can indeed suppress screening.
We solved Eqs. (2)–(4) at T ¼ 0. Figure 2(a) shows

�max, the maximum of �k at T ¼ 0, for different barrier
thicknesses Deh. The electron and hole densities are set
equal ne ¼ nh ¼ n so that only the reduced mass enters the
equations [23]. We take equal effective masses m? ¼
0:04me, noting that a 25% difference between m?

e and
m?

h [17] results in only a 10% change in the reduced

mass and �max. We restrict our density range n > nmin to
ensure that EF lies in the quadratic energy band. We
neglect the small contributions from the negative branches
of the bands.
Figure 2(a) shows for each Deh that there is a critical

density nc above which the gap�max is, at most, in the sub-
mK energy range. In realistic disordered systems it is
unlikely there would be pairing in this case. At n ¼ nc
there is a discontinuous jump in �max to much higher
energies. Reference [13] reported a similar effect for the

 0

 150

 300

 450

 600

 750

 0  1  2  3  4  5  6  7

∆ m
ax

  (
K

)

n  (1011cm-2)

0.5nm

1nm

2nm

(a)

↑↑ ↑

nmin

(p)
(q)

(r)

(b)

FIG. 2 (color online). (a) Maximum of �k at T ¼ 0 for different barrier thicknesses Deh (solid lines). Above a critical density
(arrows), �max drops discontinuously to sub-mK energies. Bands are not quadratic for n < nmin. Also shown for comparison is �max

calculated without screening for Deh ¼ 0:5 nm (dotted red line). (b) �k for Deh ¼ 1 nm at densities ðpÞ, ðqÞ, and ðrÞ marked in (a).
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2MLG system but for rs > 2:35 only, and this cannot be
achieved in the 2MLG system. As Deh decreases, the
pairing interactions become stronger and the superfluidity
persists up to a higher nc.

Shown for comparison in Fig. 2(a) is �max calculated
without screening for Deh ¼ 0:5 nm. As expected, �max

without screening is larger than �max with screening
included. For high densities n > nc, it is apparent that
screening is responsible for killing the superfluidity. In
the strongly coupled region at low densities, the effect of
screening on �max is progressively suppressed because of
the large Fermi surface smearing that occurs when the gap
is of order of the noninteracting EF and the pairs become
more localized.

The nature of the superfluidity can be understood by
looking at the k dependence of the gap �k. In the weak-
coupled BCS limit of Cooper pairs there would be a peak in
�k centered at k ¼ kF, while in the BEC region the peak in
�k would be centered at k ¼ 0 with a long tail falling off
as 1=k, indicating pairs localized in real space. Figure 2(b)
shows �k at different densities for Deh ¼ 1 nm. The den-
sities ðpÞ, ðqÞ, and ðrÞ are marked on Fig. 2(a). At density
ðpÞ, �k is constant out to k� 4kF, indicating an average
pair radius comparable to the average particle spacing.
Thus we are close to the BEC region. At densities ðqÞ
and ðrÞ the peak is becoming less broad but is still centered
on k ¼ 0 with a long 1=k tail. Further increasing the
density should cause a peak at kF to form but the gap
collapses before that happens, and so the superfluid does
not reach the BCS limit before the effectiveness of the
screening in Eq. (2) discontinuously jumps and superflu-
idity is suppressed.

The very large gaps shown in Fig. 2(a), in some cases
�max > 500 K, are particularly interesting as, in contrast
with high-Tc superconductors, these values of �max are
maintained across a wide density range. For reference, at
n ¼ 5� 1011 cm�2 the Fermi temperature TF ¼ 175 K.

To determine the superfluid transition temperatures Tc,
we first recall that for superfluids in 2D the mean-field
critical temperature TMF

c , the temperature at which the
mean-field superfluid gap goes to zero, can overestimate
the true Tc. The superfluid transition in 2D systems has a
topological Kosterlitz-Thouless (KT) character [24], and
Tc is determined by the KT temperature,

Tc ¼ TKT ¼ ð�=2Þ�sðTKTÞ: (5)

�sðTÞ is the superfluid stiffness. Mean-field theory gives a
good estimate of �sðTÞ for quadratic bands in both the BCS
and BEC limits [9]. �sð0Þ ¼ EF=4� at T ¼ 0, and �sðTÞ
falls off slowly up to T � �max if kFDeh is small, generally
the case for our parameters. For n < nc we can take
�sðTÞ ’ �sð0Þ, Eq. (5) then giving TKT ¼ EF=8. This is
because even at a density as high as n ¼ 6� 1011 cm�2,
EF=8� 26 K, still much less than the �max shown in
Fig. 2(a). For n > nc, �max is extremely small. Because

�sðTÞ collapses to zero as T becomes larger than �max,
Tc ¼ TKT is similarly small for n > nc.
Figure 3 shows the T-n phase diagram. For densities n

greater than a critical density nc, the system is a Fermi
liquid at all practicable nonzero temperatures. For n < nc
and T below the transition temperature Tc, the system is a
superfluid. Tc ¼ TKT ¼ EF=8 grows linearly with density
so the maximum transition temperature Tmax

c ¼ EFðncÞ=8.
For n < nc and T > Tc there will still be strong signatures
of the underlying superfluid state through the pseudogap.
The pseudogap is a normal state precursor of the super-
conducting gap due to local dynamic pairing correlations
and is produced by noncoherent fluctuations of the pairing
field [25]. The deviations from Fermi liquid behavior
due to the pseudogap can persist up to room temperature,
T ��max [26,27].
Table II gives values of Tmax

c and nc. These increase with
decreasing Deh because of the stronger electron-hole cou-
pling. Using hBN barriers between the gates and between
the graphene sheets [System (A)] gives � ¼ 3, and Tmax

c is
well above liquid helium temperatures. If the two graphene
bilayer sheets are separated by a hBN dielectric barrier and
suspended in air between upper and lower gates [System
(B)], the effective � ¼ 1:5 and Tmax

c is greatly increased.
Devices similar to System (B) have recently been fabri-
cated with a single bilayer graphene sheet suspended
between two gates [28]. To comparewith existing literature
on an idealized and unrealistic configuration of 2MLG
with � ¼ 1 and Deh ¼ 0 [9,13], in 2BLG the resulting
Tmax
c ¼ 350 K, the maximum value of �max is 7500 K,

and nc corresponds to rs ¼ 2:8.

FIG. 3 (color online). Temperature-density (T-n) phase dia-
gram (see text).

TABLE II. Maximum transition temperatures Tmax
c and critical

densities nc for barrier thicknesses Deh. System (A) is for the
two graphene bilayer sheets embedded in a hBN dielectric.
System (B) is for the two graphene bilayer sheets separated by
a hBN barrier and suspended in air between the gates.

System (A) System (B)

Deh (nm) Tmax
c (K) nc (1011 cm�2) Tmax

c (K) nc (1011 cm�2)

0.5 27 6.2 72 17

1 21 4.8 52 12

2 14 3.2 34 7.9
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We now discuss the experimental consequences of our
phase diagram. Even at the lowest density nmin ¼
1011 cm�2, the transition temperatures in Systems (A)
and (B) remain above liquid helium temperatures. There
will be strong experimental signatures of the superfluid
below Tc. Although the pairs are neutral, the ability to
make separate electrical contacts to the electron and hole
layers allows for spectacular electrical effects [29].
Coulomb drag and interlayer tunneling measurements
will show significant enhancements as T is decreased
below Tc [2], while counterflowmeasurements can directly
probe the superflow [29,30]. Even up to room temperature
there will be strong signatures of the pseudogap in phe-
nomena such as compressibility, specific heat capacity and
spin susceptibility. The wide density range over which
superfluidity can be observed in a single device is in
marked contrast with high-Tc superconductors, where
superconductivity occurs only in a narrow 30% band of
doping centered at optimal doping.

The 2BLG system is the first multiband system with just
one condensate. It is an opposite case to multiband super-
conductors such as magnesium-diboride where pairing is
only within the bands and multiple coupled condensates
appear [31,32]. In contrast, in the 2BLG system, pairing is
only possible between the different hole and electron
bands, leading to a single condensate and a single gap.

The combination of extremely thin barriers, large rs,
near-equal effective masses, and strong pairing attraction
makes the 2BLG system ideal for observing high-Tc super-
fluidity. In existing quality samples it should be possible to
study the phase transition from Fermi liquid to superfluid
as well as the pseudogap physics. Our approach would also
apply more generally to other small gap semiconductors
that can be made into atomically thin flakes and used with
dielectrics such as hBN.

We thank Eva Andrei, Antonio Castro Neto, and
Pierbiagio Pieri for very useful discussions.
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