
High Three-Dimensional Thermoelectric Performance from Low-Dimensional Bands

David Parker, Xin Chen, and David J. Singh

Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge,
Tennessee 37831-6056, USA

(Received 12 November 2012; published 2 April 2013)

Reduced dimensionality has long been regarded as an important strategy for increasing thermoelectric

performance, for example, in superlattices and other engineered structures. Here we point out and

illustrate by examples that three-dimensional bulk materials can be made to behave as if they were

two dimensional from the point of view of thermoelectric performance. Implications for the discovery of

new practical thermoelectrics are discussed.
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Introduction.—Thermoelectric performance is quanti-
fied by the figure of merit, ZT ¼ �S2T=�, where � is
the electrical conductivity, � is the thermal conductivity,
S is the thermopower (Seebeck coefficient), and T is the
absolute temperature [1,2]. There is no known thermody-
namic or other fundamental limitation on ZT, but finding
high ZT materials is very challenging and only a few
materials with ZT significantly higher than unity are
known. The difficulty is that finding high ZT requires
finding a material that combines transport properties
that do not normally occur together. Here we focus
on the combination of high thermopower and high
conductivity.

The low T electrical conductivity of a metal or degen-
erate semiconductor depends on the electronic states and
their scattering at the Fermi level EF, specifically � /
NðEFÞhv2i�, with N the density of states, hv2i the average
Fermi velocity for the current direction, and � an inverse
scattering rate [3,4]. The conductivity therefore improves
as one moves EF away from the band edge, as in that case
both the velocity and NðEFÞ increase. The thermopower is
different. At low T, SðTÞ / Tðd�=dEÞ=�; i.e., S=T is large
near the band edge where the logarithmic derivative of �
with energy is high.

Hicks and Dresselhaus suggested overcoming this
conundrum via quantum well structures [5]. They observed
that in a two-dimensional system the dependence of NðEÞ
on energy for a parabolic band is a step function, meaning
that for the in-plane direction one expects a faster onset of
the conductivity with energy and, furthermore, higher S for
given carrier concentration. Viewed in three dimensions,
the Fermi surfaces of superlattices or two-dimensional
semiconductors are in the shape of cylinders or pipes
running along the direction of the layering rather than
the spheres or ellipsoids of three-dimensional doped
semiconductors.

However, most thermoelectric applications involve mac-
roscopic devices that are difficult to implement with super-
lattices and experience problems such as parasitic heat
conduction in barrier layers of superlattices. Nonetheless,

one observes that NaxCoO2, representative of the highest
performance oxide thermoelectrics and showing high ZT at
high carrier concentration [6], has a very two-dimensional
electronic structure [7]. This material illustrates another
problem with using 2D electronic systems as thermoelec-
trics. The high electrical conductivity is realized only in the
layers, not perpendicular to them, while the heat conduc-
tion is more isotropic. Very high ZT is therefore realized
only in single crystals for in-plane conduction or at least in
highly textured ceramic. Here we propose an alternate
resolution of the conundrum of high � and high S using
low-dimensional electronic structures.
We observe that it is possible to have an electronic

structure that is low dimensional in a material that is not
low dimensional provided that symmetry is obeyed. This is
known in metallic materials, the best example being body
centered cubic Cr metal, where flat (i.e., 1D) parts of the
Fermi surface yield a nesting induced spin density wave
[8]. Another example is the superconductor Sr2RuO4,
which despite its tetragonal symmetry has flat one-
dimensional sheets of Fermi surface that generate nesting
induced peaks in its susceptibility [9,10]. Generally, these
cases are large Fermi surface metals, which are not of
interest as thermoelectrics. However, there is no symmetry
or other fundamental reason that this must be so, and we
begin by pointing out counterexamples.
The face centered cubic rocksalt structure chalcoge-

nides, PbTe, PbSe, PbS and SnTe, are the basis of excellent
thermoelectric materials [1,2]. While the thermoelectric
properties of these materials have been discussed in terms
of various physical models, band structure calculations
combined with standard Boltzmann transport theory can
reproduce and predict their thermopowers, as illustrated by
predictions for PbSe [11,12]. As is well known, the valence
band (p-type) electronic structure is dominated by L-point
hole pockets for low carrier concentrations and T, while at
higher carrier concentrations and T transport and other data
imply additional electronic features, often discussed as a
second heavy band [13–15]. Band structure calculations
show no second heavy band, but instead connections
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developing between the L-point pockets near, but not at,
the valence band maximum.

We illustrate this in Fig. 1, which shows energy isosur-
faces for the near valence band edge of PbTe, PbSe, PbS
and SnTe. These are based on calculations, including spin
orbit, done with the augmented plane wave plus local
orbital method [16], as implemented in the WIEN2K code
[17]. We employed the modified Becke-Johnson potential
of Tran and Blaha [18], which generally gives improved
band gaps for simple semiconductors and insulators
[18–20]. Besides these details, the calculations are similar
to those presented previously [11,21–29]. The densities of
states (not shown) show low values characteristic of a light
band up to the energy where the L-point pockets connect,
where there is a sharp onset of a steeply rising density of
states, which is clearly beneficial for obtaining enhanced
SðTÞ at doping levels near the onset and was discussed in
relation to the thermoelectric performance of PbTe [26].
Here we associate this with the pipes.

Qualitatively, the Fermi surface of a doped superlattice
or other 2D semiconductor is cylindrical running along the
stacking direction. The conductivity is low along the cyl-
inder and high in the plane. Considering, for example, the
conductivity along x for a cubic network of pipes running
along kx, ky, and kz, as is approximately the case in these

materials, the pipes along ky and kz will contribute as in a

superlattice material in plane, while the pipes along kx will
behave like the stacking direction and will not contribute to
the conductivity. Thus the energy dependence and other
behaviors are the same as the superlattice, including the
enhanced 2D behavior of the thermopower, except that

now the properties are isotropic due to the cubic symmetry
and superposition of pipes on different directions.
Clearly, the electronic structures of the chalcogenides

shown in Fig. 1 are approximations of this idealized behav-
ior. Nonetheless, they suggest elucidation of the behavior
of a cubic or other three-dimensional semiconductor with a
low-dimensional electronic structure in the sense discussed
above. This may be a useful paradigm in the search for new
high performance thermoelectric materials.
Calculations.—Here we pursue calculations to describe

the behavior of the transport in the aforementioned
‘‘pipes’’ scenario. We consider a one band material with
a pipelike electronic structure, beginning by assuming the
electronic scattering time �ðEÞ independent of energy, i.e.,
the constant scattering time approximation (CSTA). This
has been used with quantitative accuracy to describe
the thermopower of a substantial number of thermoelectric
materials [26,30–37], so its usage is on solid practical
grounds. We also present results for the thermopower and
power factor in a case where �ðEÞ is inversely proportional
to the electronic density of states, as considered in
Refs. [38–40]; we will see that this model (which we
term DSTA) renders the two-dimensional electronic struc-
ture scenario even more favorable relative to the three-
dimensional electronic structure scenario. Note also that
here we consider two-dimensional electronic structures in
bulk materials as opposed to the two-dimensional physical
structures in nonbulk materials [41] such as nanowires,
considered in Refs. [39–41].
Then we have the canonical expressions for the electri-

cal conductivity �ðTÞ and Seebeck coefficient SðTÞ:
�ðEÞ ¼ NðEÞv2ðEÞ�ðEÞ; (1)

�ðTÞ ¼ �
Z 1

�1
dE�ðEÞdfðE��Þ=dE; (2)

SðTÞ¼� kB
e�ðTÞ

Z 1

�1
dE�ðEÞE��

T
dfðE��Þ=dE; (3)

with f the Fermi function, e the electronic charge, kB
Boltzmann’s constant, �ðEÞ the scattering time, vðEÞ the
Fermi velocity, � the chemical potential, and NðEÞ the
density of states. The tensor indices are suppressed for
clarity, and the integrations in actual calculations involve
a Brillouin zone sum.
We now compare the thermopower and power factor

S2� of two idealized Fermi surface topologies: a two-
dimensional cylindrical Fermi surface connecting the L
points of the fcc Brillouin zone, as suggested by Fig. 1,
and a three-dimensional spherical Fermi surface. Note that
in actual materials Fermi surfaces which contact Brillouin
zone faces must do so at perpendicular angles, so the pipes
reconnect at the L-point pockets, as in, for example, band
structure calculations for PbTe. Both bands are assumed
parabolic, and to ensure a fair comparison we choose
the radial masses of the cylinder and sphere equal.

PbTe PbSe

SnTePbS

FIG. 1 (color online). Calculated valence band constant energy
surfaces of PbTe, PbSe, PbS, and SnTe at 0.23, 0.49, 0.61, and
0.41 eV below the valence band maximum, respectively. The
corresponding carrier concentrations in holes per unit cell are
0.016, 0.030, 0.054, and 0.016, respectively.
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Additionally, as was noted by Ref. [42], in the chalcoge-
nides the cylindrical band is 12-fold degenerate and we
have assumed this here. For comparison purposes we take
the spherical Fermi surface to be 12-fold degenerate.

Then within the CSTA the above integrals are easily
evaluated for both cases, yielding the following expres-
sions (here � ¼ �=T, the reduced chemical potential):

S3DðTÞ ¼ 5

3

F3=2ð�Þ
F1=2ð�Þ � �; (4)

�3DðTÞ ¼ pe2�

m� ; (5)

S2DðTÞ ¼ 2
F1ð�Þ
F0ð�Þ � �; (6)

�2DðTÞ ¼ 2pe2�

3m� : (7)

Here p is the carrier density given as

p ¼
Z

dENðEÞfðE��Þ; (8)

where NðEÞ is the density of states, m� the carrier effective
mass, and F is the Fermi-Dirac integral, defined as

Fið�Þ ¼
Z 1

0
xi=½expðx� �Þ þ 1�: (9)

The 2=3 factor for the two-dimensional conductivity arises
because each of the cylinders contributing to NðEÞ, and
hence p, conducts in only two of three directions. Finally,
we incorporate the relation of the reduced chemical poten-
tial � to the carrier concentration p, which is performed by
inverting Eq. (8), as in Ref. [43].

We now move to the calculated results. We have
assumed (although the results do not sensitively depend
on these assumptions) a fcc cell of lattice constant 6.46 Å,
band masses of 0:2m0, where m0 is the free electron mass,
and fixed the temperature at 1000 K, the approximate
maximum operating temperature of the chalcogenides.
We assume a doping independent scattering time � of
10�15 sec, which yields high temperature conductivities
of 100–1000 ð�cmÞ�1, in line with experimental results.
Figure 2 depicts the calculated thermopower results for the
two scenarios. The 2D thermopower exceeds the 3D values
by a substantial margin throughout the entire range of
0.001–0.5 holes per unit cell. At the heavy dopings of
0.05–0.1 per unit cell, the 2D thermopower is nearly double
the 3D value, which is highly favorable for thermoelectric
performance, and this thermopower increase comes at a
conductivity reduction [Eqs. (5) and (7)], relative to the 3D
case, of only one-third.

The 2D power factor (Fig. 3) exceeds the 3D value
across the entire range of concentration, and its maximum
value is two and a half times the corresponding 3D maxi-
mum. It is highly likely that 2D performance (i.e., ZT)

would substantially exceed that of the 3D case. In the inset
of Fig. 2 we depict a ‘‘real-world’’ example of this
two-dimensional feature—the first-principles calculated
valence band density of states of PbTe, the highest per-
formance thermoelectric known [44]. The plot shows a
feature very similar to a broadened step function expected
for a two-dimensional feature. We emphasize that the
notation 2D and 3D is to distinguish the cases, but that in
both cases we are referring to the bulk, macroscopic mea-
surable values for the cubic crystal.
Figure 2 also depicts the thermopower results within the

DSTA. For the 2D case the DSTA is identical to the
CSTA since the 2D density of states is constant with
energy. For the 3D case, however, use of the DSTA results
in a significant decrease in thermopower, as it preferen-
tially weights the carriers nearest in energy to the band
edge, where the DOS is lower and �ðEÞ therefore larger.
The upshot of this discussion is that, for the CSTA, the
beneficial effect of two-dimensional electronic structures

FIG. 2 (color online). (Main panel) The calculated thermo-
power for the 2D (blue solid line) and 3D (red dashed and dotted
lines) cases. For the 2D case the CSTA and DSTA give identical
results, while for the 3D case the CSTA results are the heavy
dashed line and the DSTA results the dotted line. Carrier con-
centrations given per unit cell (u.c.). Inset: The first-principles
calculated density of states of the two-dimensional electronic
feature in PbTe, as depicted in Fig. 1.

FIG. 3 (color online). The calculated power factor S2� in
mW=mK2 for the 2D (blue solid line) and 3D (red dashed and
dotted lines) cases. Same line conventions as in Fig. 2.
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relative to three-dimensional ones is substantial, and that
moving to the less-used DSTA only increases this effect.

Analysis of enhanced Seebeck coefficient in the 2D
case.—The results of the previous section strongly suggest
that the two-dimensional ‘‘pipe’’ topology is favorable for
thermoelectric performance, particularly for the Seebeck
coefficient, an indispensable ingredient of good thermo-
electric performance. Here we provide analytic under-
standing of this result.

The enhanced behavior of the 2D system modeled here
arises from the relatively larger Fermi surface volume (or,
equivalently, carrier concentration) of a 2D cylinder rela-
tive to a 3D sphere, for given Fermi energy. The Fermi
surface volume of the cylinder is proportional to the length
of the cylinder ¼ 2�

a , a value much larger than the radius of

the cylinder or the sphere, so that for given Fermi energy
the carrier concentration is much larger. The Fermi energy
is relevant because of the well-known Mott formula for the
thermopower,

S ¼ �2kB
3e

kBTd log½�ðEÞ�=dEjE¼EF
; (10)

and for a parabolic 3D band yields

S ¼ �2kB
2e

kBT=EF; (11)

so the thermopower is inversely proportional to EF. In two
dimensions, at fixed carrier concentration EF is much
smaller than in three dimensions, and the thermopower is
enhanced as a result.

To gain additional insight into this phenomenon and
explore the effect of changing parameters, we perform
analytic calculations within two well-known limits for
which closed form results are available: the degenerate
limit, when � � EF=T � 1, and the nondegenerate limit,
when�< 0. Together these regimes account formost of the
behavior of the thermopower in Fig. 1. We begin with the
degenerate limit. In two dimensions, for radial massm�, it is
easy to show (assuming a band degeneracy of 24, 2 for spin
and 12 for the 12 pipes) that the thermopower takes the form

S2D ¼ �2

3

kB
e

3m�a2kB
�@2p

; (12)

where p is the carrier concentration per unit cell, and
similarly for 3D,

S3D ¼ �2

2

kB
e

2m�a2kBT
@
2ð�2pÞ2=3 ; (13)

so that one finds that

S2D=S3D ¼ ð�=pÞ1=3: (14)

Since p is typically much less than unity, S2D is substan-
tially larger than S3D. Numerically, forp ¼ 0:5 per unit cell
(yielding an �2D of 5.5), this ratio is 1.845, while the exact
result is 1.747, a 6% difference.

We now treat the nondegenerate limit, which is specified

by � � 0, so fðE��Þ reduces to exp��E
T and the energy

integrals can be done exactly. As is well known [45], the
3D parabolic band thermopower is given by

Sðp; TÞ3D ¼ kB
e

�
5

2
� �3Dðp; TÞ

�
: (15)

For our 2D cylindrical parabolic band, one finds that

Sðp; TÞ2D ¼ kB
e
½2� �2Dðp; TÞ�: (16)

Note that �2D and �3D vary due to the topology difference,
and we now work out an expression for their difference.
For two dimensions, the relation of � and p can be eval-
uated exactly and is simply

�2D ¼ log

�
exp

�
�p

3m�Ta2

�
� 1

�
; (17)

and in the nondegenerate limit this becomes

�2D ¼ log

�
�p

3m�Ta2

�
: (18)

One can similarly work out an expression for �3D in the
nondegenerate limit, and one finds

�3D ¼ log

�
4�3=2p

3ð2m�Þ3=2a3T3=2

�
; (19)

so that, restoring the appropriate powers of @ and kB, one
finds that

�2D � �3D ¼ � log

�
m�1=2aðkBTÞ1=2ffiffiffiffiffiffiffi

2�
p

@

�
: (20)

For the modeled situation (m� ¼ 0:2m0, T ¼ 1000 K,

a ¼ 6:46 �A), the difference is �2:097 so that in the non-
degenerate limit one finds S2D � S3D ¼ 1:597kB=e ¼
137 �V=K, which is very close to the difference in these
values at the left-hand of Fig. 2. This is a substantial
increase.
The last equation reveals that if the effective mass

(which was chosen on the basis of effective masses in the
chalcogenides and Bi2Te3) is larger, the effective benefit in
the nondegenerate limit is smaller, but for large effective
mass materials one is typically closer to the degenerate
limit. Conversely, if the temperature is smaller (such as for
room temperature applications), the difference is corre-
spondingly greater, provided the sample remains in the
nondegenerate limit.
Summary and Conclusions.—To summarize, we have

shown here that (1) low-dimensional electronic structures
can occur even in cubic semiconductors and that (2) such
electronic structures are highly beneficial for thermoelec-
tric performance. This represents a new paradigm for
high thermoelectric performance: low-dimensional elec-
tronic structures enhancing performance in fully three-
dimensional bulk thermoelectrics. Examples of existing
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materials in which this effect appears to be active are the
high performance thermoelectrics PbTe, PbSe, and PbS.We
suggest searching for new thermoelectric materials with
this feature. One such compound may be SnTe [46,47].
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