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We provide a comprehensive picture of the jamming phase diagram by connecting the athermal,

granular ensemble of jammed states and the equilibrium fluid through the inherent structure paradigm for

a system of hard disks confined to a narrow channel. The J line is shown to be divided into packings that

are either accessible or inaccessible from the equilibrium fluid. The J point itself is found to occur at the

transition between these two sets of packings and is located at the maximum of the inherent structure

distribution. We also present a general thermodynamic argument that suggests the density of the states at

the maximum of the configurational entropy represents a lower bound on the J-point density in hard

sphere systems. Finally, we show that the granular system, modeled using the Edwards ensemble, and the

fluid sample the same set of thermodynamically accessible states over the full range of thermodynamic

state points, but only occupy the same set of inherent structures, under the same thermodynamic

conditions, at two points, corresponding to zero and infinite pressures, where they sample the J-point

states and the most dense packing, respectively.
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The physics of jamming [1–4] and how particles pack
together influences the thermodynamic and mechanical
properties of a variety of materials including crystals,
liquids, glasses, and athermal granular materials. The prob-
lems encountered in the physics of jamming also have
important overlaps with optimization problems in com-
puter science [5] and information theory [6]. The jamming
phase diagram [7,8], which locates the jamming transition
as a function of various thermodynamic variables, was
introduced in an attempt to describe the jamming phe-
nomena of these systems within a unified conceptual
framework. However, due to the complex nonequilibrium
dynamics involved in any jamming protocol, establishing
a clear relationship between the equilibrium fluid and
the mechanically jammed states, remains a significant
challenge [4].

Recent developments of the replica mean field theory
(RMFT) [9–15], building on an earlier theory of the ther-
modynamic glass transition [16,17], have made significant
advances in our understanding of the jamming phase
diagram by studying a class of jammed matter that can
be approximated as the infinite pressure glassy states of a
liquid. By focusing on a region of the metastable liquid
where the caging of the particles by their neighbors local-
izes their dynamics, RMFT employs a replica version of
equilibrium liquid methodologies as a starting point and
has been shown to successfully describe thermodynamics
of this class of jammed states. Most importantly, the theory
predicts that jamming, in some idealized models [18,19]
and hard spheres [11,20], does not occur at a single tran-
sition J point, as originally suggested, but occurs over a

set of points constituting a segment on the density axis
referred to as the J line. The existence of the J line in the
hard sphere model has been subsequently verified by
simulations [21,22].
Within RMFT, the mean field relations describing the

metastable state with volume fraction, �, are mapped to
relations describing the mechanically jammed states with
volume fraction, �J, by considering a cage that momen-
tarily traps the particles. The cage size is then systemati-
cally taken to zero under the mean field constraints.
Physically, this amounts to an artificial quench, that ren-
ders the particles immobile due to their local neighbor-
hood. The long lived glassy states first appear in the fluid
at �d and artificially quenching these states locates the
lowest density bound of the J line as �th. For hard spheres
in three dimensions [10], �d � 0:58, which coincides with
the mode coupling density for the system, and �th � 0:64.
The upper bound of the J line, which occurs at the glass
close packed density, �GCP, is obtained by artificially
quenching the fluid at the Kauzmann density, �K, where
the number of fluid states becomes subexponential and the
system is expected to go through an ideal glass transition
[23,24]. Again, for 3D hard spheres, RMFT finds �K and
�GCP to be approximately 0.62 and 0.68, respectively.
However, despite the success of RMFT, it does not capture
the complete picture of jamming because the glassy states
of the metastable fluid only represent a subset of all pos-
sible inherent structures [25–29], which are the mechani-
cally stable packings formed from infinitely fast quenches
of any equilibrium fluid configuration, at any �. The
density of the J point, ��

J, is defined as the �J of inherent
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structures obtained from ideal gas configurations, andwhile
many jamming protocols [8,30,31] do find ��

J ��th, such
quenches are not accessible within RMFT. Other protocols
[21,32] produce packing at much lower densities than 0.64
in hard spheres suggesting the existence of a wider range
of packing densities than that predicted by RMFT.

In this Letter, we use a quasi-one-dimensional hard disk
model, where the nonequilibrium dynamics of mapping
fluid configurations to their inherent structures can be
treated exactly for the full range of fluid densities, to
explore the properties of the J line. We show the J line
extends well below �th and can be divided into thermo-
dynamically accessible and inaccessible jammed states.
We also show that the J point locates the lowest density
of thermodynamically accessible jammed states and is
located at the maximum of the inherent structure distribu-
tion. Finally, we find that the granular system of this model,
treated using the Edwards ensemble approach [33,34],
samples the same set of thermodynamically accessible
jammed states as the fluid, thus providing a fundamental
link between these two states of matter.

We begin by generating the full ensemble of jammed
states for a system of N, two-dimensional hard disks of
diameter�, confined to a narrow channel by two hard walls

separated by a distance H=�< 1þ ffiffiffiffiffiffiffiffi
3=4

p
. In D dimen-

sions, a spherical particle is locally jammed if it has at least
Dþ 1 rigid contacts arranged such that they are not all
within the same hemisphere. However, the local jamming
of all the particles in a structure is a necessary, but not
sufficient, condition to ensure collective jamming because
the concerted motion of a group of particles may allow
the structure to collapse [35,36]. The confinement of the
present model prevents the disks from passing each other,
which eliminates the possibility of collective motions of
particles unjamming the packings and allows us to count
all the collectively jammed structures by simply consider-
ing local packing constraints. It also ensures that each disk
can only interact with its nearest neighbors and the wall. As
a result, there are only four particle configurations that
satisfy the local jamming constraints, two dense configu-
rations (denoted 1 and 3) and two open, defect-type con-
figurations, denoted 2 and 4 (see Fig. 1). The volume
associated with each configuration is given by Hlij, where

the lij is the longitudinal distance between neighboring

disk centers, with L0 ¼ li;1 ¼ li;3 ¼ ½Hð2��HÞ�1=2 and

li;2 ¼ li;4 ¼ �. Any jammed configuration can now be

identified by an ordered list of compatible neighboring
bonds [37]. However, some bond configurations are incom-
patible in that they lead to unjammed configurations. For
example, configurations containing neighboring defects,
such as —2—2— or —4—4—, are not allowed as the
central disk in the local arrangement is unjammed. All
the jammed states of the model are isostatic [38]. Using
the Edwards postulate that jammed states of equal volume
are equally probable [33,34,38], we use the transfer matrix

approach to study the ensemble of jammed states [37]. For
a fixed N, the volume of the system will fluctuate depe-
nding on the number of type 2 and 4 states in the configu-
ration so we introduce a longitudinal pressure PL, as a
conjugate to the volume, and fix the system at a constant
temperature, T. The transfer matrix is of the form: Mij ¼
Cij expð��PLh0lijÞ, where h0 ¼ H � �. The exponential

term is the Gibbs measure appropriate for the N, PL, T
ensemble and Cij is zero when the two bonds are incom-

patible [39] and one otherwise. � ¼ 1=kT, where k is the
equivalent to the Boltzmann constant in the jammed en-
semble. In the thermodynamic limit, the partition function
for the system is given by�ðN;PL; TÞ ¼ NkT lnð�Þ, where
� is the largest eigenvalue ofM.�J and the configurational
entropy, which is directly related to the number of jammed
packings,NJð�JÞ, through Sc ¼ k ln½NJð�JÞ�, are given by

�J ¼ N��2

4HLJ

¼ � ��2

4kT@ðln�Þ=@PL

; (1)

Sc=Nk ¼ ln�þ T@ðln�Þ=@T: (2)

Figure 2 shows Sc=Nk as a function of �J for the case
when H=� ¼ 1:866, obtained from a parametric plot
of Eqs. (1) and (2) with respect to PL. The same distribu-
tion of states for this system can be obtained using a
combinatorial approach [40]. The advantage of the present
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FIG. 1 (color online). Analytical quench connecting equilib-
rium fluid configurations of disks i,m, n, j to the most dense (1, 3)
and least dense (2, 4) local packing arrangements. Equilibrium
configuration of four disks are initially mapped to a tangent disk
configuration by compression in the x axis. The local arrangement
of the disks contained in the product of the kernelKðyi; yjÞ and the
dot product of vectors [Eq. (4)] maps the central disks to their
jammed configuration. See text for more details.
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method is that it allows us to follow how the granular
system explores the packing landscape as a function of
the externally applied pressure and we have plotted the full
equation of state (EOS) in Fig. 3. While there is no internal
pressure from the particles in a granular system, it is still
necessary for it to do work against PL if the system
expands to sample less dense states, but there are more
low density basins than high density basins, so the balance
between these two competing elements results in the
‘‘equilibrium’’ condition for the granular system. In the
limit that PLh0 ! 1, Sc=Nk ! 0 as the system moves

toward the most dense state with �J ¼ 0:842, while as
PLh0 ! 0, the system samples the jammed states associ-
ated with the maximum in Sc where �J ¼ 0:659. If we
use pressures below zero, we find less dense packings and
the system enters the least dense jammed state with
�J ¼ 0:561, Sc=Nk ¼ 0, as PLh0 ! �1. However, there
is no attraction between hard particles that could sustain a
negative pressure, suggesting the packings below the Sc
maximum are thermodynamically inaccessible.
We now examine how the equilibrium fluid for this

system samples the landscape. The exact partition function
for this model was originally solved by Barker [41], but we
make use of the transfer matrix solution by Kofke et al.
[42]. If the positions of the disks are fixed in the y direction,
the configurational integral in the x direction can be simply
treated as a Tonks gas [43]. Using a Laplace transform, the
volume dependence is removed and the partition function,
Z, in the N, P, T ensemble becomes

Z ¼ 1

�DNð�PLÞNþ1

Z
dyKNðy; yÞ: (3)

Here � is the thermal wavelength and Kðy1; y2Þ ¼
exp½�PLh0Lxðy1; y2Þ�, with y1 and y2 being the y coordi-
nates of two adjacent disks in contact. Lx is the projection
of the distance between the two contacting disks along
the x axis and is a function of y1, y2. Solving the eigen-
value problem associated with Eq. (3) [42] yields the
equilibrium EOS for the fluid plotted in Fig. 3. To quench
the equilibrium fluid to its inherent structure, we take
advantage of the information contained within the matrix
K regarding the geometry of adjacent tangent disks.
Starting from an equilibrium configuration, we translate
the disks along the x axis only, so that the disks are in
contact with their nearest neighbors. Figure 1 shows that
the type of bond (1, 3 or 2, 4) between the two central disks
(mn) that will result from further compression can be
determined from the sign of the product of areas made
from the triangles created by particles i, m, n and m, n, j.
The geometry of the four disks is contained in the chain
product matrix Kðyi; ymÞKðym; ynÞKðyn; yjÞ. The product

area-vector-product rule, for triangles ~4imn and ~4mnj,

that determine the nature of the bond is

~4imn � ~4mnj > 0 bondmn�ij
x ðmnÞ ¼ lk;1

~4imn � ~4mnj < 0 bondmn�ij
x ðmnÞ ¼ �:

(4)

We can now define a new transfer matrix G, whose
elements are weighted by the bonds they would jam to
under the jamming criterion, Gði2; i3Þ ¼ P

i¼i1;i4
Kði1; i2Þ�

Kði2; i3ÞKði3; i4Þ exp½��ij
x ðmnÞ�. For a system with peri-

odic boundary conditions and N � 2 particles, the volume
is given by Vinh

N�2 ¼ lim�!0@ log½TrðGÞ�=@�.
This method represents an ideal, infinitely fast, non-

equilibrium quench of the liquid to its inherent structure
and amounts to a Stillinger map [27], where every
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FIG. 2 (color online). Sc=Nk versus �J for H=� ¼ 1:866
showing features of the J line. The thermodynamically acces-
sible packings have densities between the J point, with ��
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0:659 (green square) and the most dense jammed state (black
circle) with�J ¼ 0:842.�th � 0:72 (orange diamond) is located
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inaccessible packings densities between the J point and the least
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FIG. 3 (color online). EOS for H=� ¼ 1:866. EOS for granu-
lar ensemble: �PLh0 as a function of �J (blue dot-dashed line).
EOS for equilibrium thermal fluid: �PLh0 as a function of �
(black solid line). �J of basins sampled by equilibrium fluid (red
dashed line). EOS for fluid compressed using the LS method
with different @�=@t (dotted lines). �d � 0:48 obtained from
MD simulations. Insert: �J as a function of @�=@t.
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configuration is mapped uniquely to the jammed state of
the inherent structure basin. Consequently, the probability
of sampling a jammed state is weighted by the volume
of configuration space in the inherent structure basin.
Figure 3 shows both the equilibrium EOS for the fluid
as a function of � and the �J of the inherent structure
sampled by the fluid. Both the fluid and the granular
system sample the same set of thermodynamically acces-
sible jammed states over the full range of thermodynamic
state points, but the equilibrium properties of the fluid arise
from competition between the configurational entropy (the
number of basins) and the free volume of a single basin,
while the granular ensemble has no free volume contribu-
tion. As a result, the fluid samples the inherent structure
basins of jammed structures with a lower �J than the
granular system, at the same pressure. However, the fluid
and the granular system sample the same set of basins at
two particular values of PL. In the limit that PL ! 1, they
both move toward the most dense state. There is only a
single most dense structure, so the configurational entropy
goes to zero, but there is no ideal glass transition in the
fluid as this only occurs at PL ! 1 [44–46]. The two
systems also sample the basins associated with the maxi-
mum in Sc as PL ! 0, i.e., as the fluid approaches the ideal
gas state.

A simple thermodynamic argument can help us under-
stand which jammed states are thermodynamically acces-
sible in hard sphere systems in general. The entropy of a
hard particle fluid at � is Sfð�Þ=Nk ¼ lnNgð�JÞ þ
lnQgð�;�JÞ, where Qgð�;�JÞ is the configuration space

of a single inherent structure basin that maps to �J.
At equilibrium, the system samples the set of basins with
�J that satisfy,

ð@Sf=@�JÞ� ¼ 0: (5)

The free volume EOS [47] and the EOS for constrained
glasses [28,29] suggest that ½@Qgð�;�JÞ=@�J�� � 0. On

the other hand, we generally expect there to be a single
maximum inNgð�JÞ, with only a few very high or very low

density states, because of the coupling between density
and structural order [31] and estimates of hard sphere
packing distributions generally yield a Gaussian distribu-
tion [28,29]. Combined, these conditions necessarily imply
the equilibrium system is unable to sample basins with a
�J lower than those at the Sc maximum. If the system did
sample states with �J lower than the maximum, we would
have ½@Ngð�JÞ=@�J�> 0 and the equilibrium condition

could never be satisfied. In addition, if the ideal gas does
sample the basins associated with the Sc maximum, then
½@Qgð�;�JÞ=@�J�� ¼ 0, which suggests that the config-

urational volume of the basins, for all the glasses, becomes
the same in the low density limit. This is true for the quasi-
one-dimensional system studied here, and for the one-
dimensional system of nonadditive hard rods, where at
� ¼ 0, all the particles in every glass become points caged

by their two neighboring points on the line. Speedy [48]
found, for a binary mixture of hard disks in two dimen-
sions, that the difference in entropy between the free ideal
gas and the ideal gas constrained to a single basin is
independent of the basin’s �J. However, a recent study
[49] of disk packings involving a small number of particles
suggests that individual packings have geometry depen-
dent basin volumes. Nevertheless, Eq. (5), in the limit
� ! 0, defines the lowest density jammed packing acces-
sible to the equilibrium fluid. This provides a thermody-
namic definition of the J point.
We now use molecular dynamics simulations of our

systems withN ¼ 104 disks to compare our exact mapping
scheme with a more traditional compression algorithm.
Starting from a random, low density configuration with
� ¼ 0:05, the disks were compressed at a rate of d�=dt
using a modified Lubachevsky and Stillinger [50] scheme
that ensures H=� remains constant as the disks are
expanded. The EOS for the system under different com-
pression rates are plotted in Fig. 3. The compressions
follow the equilibrium EOS at low densities because the
compression scheme allows the system to move between
basins as it evolves. Eventually the fluid falls out of equi-
librium at higher densities when caging effects start to
become important and the system becomes trapped in a
glassy state consisting of a single basin on the inherent
structure landscape. Continued compression leads to a
jammed state where the pressure diverges. The jamming
density of the glasses, as a function of compression rate
(see insert in Fig. 3), was obtained by counting the number
of defects in the glass and taking averages over 20 inde-
pendent runs at each d�=dt. Not surprisingly, the jamming
density increases with decreasing d�=dt as slower com-
pression rates allow the system to remain in equilibrium
longer. To reach the most dense state, the system must
be compressed slowly enough to ensure that it remains in
equilibrium at all points along the trajectory. The density
at which the system first starts to fall out of equilibrium
as a result of compression (see Fig. 3) provides us with an
estimate of �d for our model. Packings generated from
fluid configurations at this density give �th � 0:72, but
our exact results show that there are many more jammed
configurations with a lower �J.
The details of particle packing in higher dimensions

are significantly more complex than found in our model.
Nevertheless, the simplicity of this system allows us to
bring together many of the key elements of jamming,
connecting jammed states with the equilibrium fluid and
making a direct comparison of fluid and granular ensem-
bles, to provide a comprehensive picture of the jamming
phase diagram that has not been possible in higher dimen-
sions. Our model also shares many of the same features of
the jamming phase diagram of higher dimensions, such as
a well-defined �d and a distribution of jammed structures
that was speculated to exist by Ciamarra et al. [20] for
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hard spheres. These common features suggest there is a
strong possibility that the new details of the jamming phase
diagram established here are also relevant to other hard
particle systems.
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