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Thin jets of viscous fluid like honey falling from capillary nozzles can attain lengths exceeding 10 m

before breaking up into droplets via the Rayleigh-Plateau (surface tension) instability. Using a combi-

nation of laboratory experiments and WKB analysis of the growth of shape perturbations on a jet being

stretched by gravity, we determine how the jet’s intact length lb depends on the flow rate Q, the viscosity

�, and the surface tension coefficient �. In the asymptotic limit of a high-viscosity jet, lb �
ðgQ2�4=�4Þ1=3, where g is the gravitational acceleration. The agreement between theory and experiment

is good, except for very long jets.
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The breakup of liquid jets due to the action of surface
tension is a classic fluid-mechanical instability, first
explained theoretically by Plateau [1] and Rayleigh [2]. A
familiar example of it is a thin stream of water flowing
steadily from a faucet, which breaks up into droplets after a
distance � 10 cm. If, however, the water is replaced by a
much more viscous fluid like honey, the jet can attain
lengths of 10 m or more before breaking. This is paradoxi-
cal: Theory [3] predicts that theweight of fluid elements in a
long viscous jet is balanced by the vertical momentum flux
(inertia) over most of the jet’s length and that the viscous
force that resists the stretching of the jet is negligible in
comparison. But, if this is so, how can the viscosity influ-
ence the breakup length? Senchenko andBohr [4] attempted
to answer this question by analyzing the growth of small
perturbations of the radius of a viscous jet that is strongly
stretched and thinned by gravity. But, their conclusion that
the growth rate of the perturbations is independent of vis-
cosity only deepens the paradox instead of resolving it.

In this Letter, we report the first systematic experimental
investigation of the breakup length of falling viscous jets
and propose a new theory that explains how viscosity acts
to delay jet breakup. To set the stage, we recall that fluids
falling from circular nozzles typically exhibit three distinct
regimes as a function of the flow rate [5]. At very low flow
rates, a ‘‘periodic dripping’’ regime occurs in which drops
of constant mass detach periodically at a downstream
distance comparable to the nozzle diameter. As the flow
rate increases, a transition to a ‘‘dripping faucet’’ regime
occurs in which the mass of the detaching drops varies
quasiperiodically or chaotically. Finally, as the flow rate is
increased further, a transition occurs to a ‘‘jetting’’ (J)
regime in which a steady jet emerges from the nozzle
and breaks up further downstream. Our focus here is on
the length of the intact portion of the jet in this regime.

In the literature, the dependence of the breakup length
on the flow rate and fluid properties such as the surface
tension has been extensively studied for high-speed jets in
quiescent or coflowing fluids [6,7]. By contrast, viscous
jets falling under gravity have been the subject of only a
few experimental [8,9] and theoretical [4,9–11] studies,
none of which arrived at a prediction for the breakup length
as a function of the flow rate and the fluid properties.
Experiments.—We used silicon oils with densities

� ¼ 963–974 kgm�3, surface tension coefficient � ¼
0:021 Nm�1, and viscosities � ¼ 50–27 800 cS. A thin
vertical jet was generated by ejecting the oil downward
through a nozzle of diameter 2r0 ¼ 2–4 mm at a constant
flow rate with a rangeQ ¼ 0:0036–1:4 ml=s, using either a
syringe pump controlled by a stepper motor or an open
reservoir with an adjustable valve at the bottom. The
reservoir was sufficiently large (14 cm� 14 cm wide
and 20 cm deep) that the flow rate was constant to within
�2% during all of the experiments. To eliminate the
influence of air drag on longer jets (breakup length
lb > 2:5 m), we enclosed the nozzle and the jet in a cylin-
drical vacuum chamber with inner diameter 19 cm and
length � 7:5 m. The bottom portion (2 m) of the cylinder
was transparent to permit observation. A partial vacuum
was created inside the cylinder using a Siemens
rotary vacuum motor, allowing even the longest jets
(lb ¼ 7:5 m) to remain perfectly straight.
We observed three distinct regimes of behavior of the

ejected fluid, including the periodic dripping regime at
very low flow rates and the J regime at high flow rates.
At intermediate flow rates, however, we did not observe
the dripping faucet regime but rather an oscillatory
‘‘pulsating’’ regime. Here, the jet had a reasonably steady
shape, especially near the nozzle, and broke up at a well-
defined distance that greatly exceeded the nozzle diameter.
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However, small periodic oscillations of the jet’s shape
about the mean diameter occurred, corresponding to the
absolute instability identified by Ref. [9].

We measured the breakup length lb for a total of 87
experiments, including 67 in the jetting regime and 20 in
the pulsating regime. In some experiments, we detected the
point of breakup by moving a rapid camera step by step
along the jet as it thins. In most cases, however, we first
located the breakup point approximately by eye with the
help of a stroboscope and then used a rapid camera at this
location to make a more precise measurement. Figure 2
shows lb as a function of flow rate for three different
viscosities. As one expects intuitively, the breakup length
is an increasing function of both the flow rate and the
viscosity.

Dimensional analysis.—The first step toward a more
quantitative understanding is a dimensional analysis. The
breakup length lb depends on the viscosity �, the surface
tension coefficient �, the density �, the flow rate Q, the
gravitational acceleration g, and the nozzle radius r0.
Buckingham’s � theorem [12] then implies �b ¼
fctð��;��;�rÞ, where

�b ¼ lb

�
g

Q2

�
1=5

; �� ¼ �

�
ðQg2Þ1=5;

�� ¼ �

�
ðQ4g3Þ�1=5; �r ¼ r0

�
g

Q2

�
1=5

;

(1)

where � ¼ ��.
WKB analysis.—Because the structure of the jet varies

slowly in the axial direction, the growth of perturbations
can be treated using a WKB-type approach in which dis-
turbances locally have the form of plane waves [11]. The
starting point is the equations governing plug flow in a
slender vertical jet of viscous fluid [13]:

@tAþ ðAvÞ0 ¼ 0; (2a)

�Að@tvþ vv0Þ ¼ 3�ðAv0Þ0 þ �gA� �A�0; (2b)

� ¼ 1

rð1þ r02Þ1=2 �
r00

ð1þ r02Þ3=2 ; (2c)

where rðz; tÞ is the jet’s radius, A ¼ �r2, vðz; tÞ is the
axial (vertical) velocity, and � is the mean curvature of
the jet’s outer surface. The primes denote differentiation
with respect to the distance z beneath the nozzle.
Equations (2a) and (2b) express conservation of mass and
momentum, respectively. The three terms on the right side
of (2b) represent the viscous force that resists stretching,
the weight of the fluid, and the surface tension force,
respectively, all per unit length of the jet.

In the absence of perturbations, the steady flow of the jet
is governed by (2) with @t ¼ 0. A general analytical solu-
tion of these equations was obtained by Ref. [3] in the limit
of no surface tension (� ¼ 0). The corresponding axial
velocity vðzÞ is shown in Fig. 1 for two values of the

normalized ejection speed v̂0 ¼ v0=ð3g�Þ1=3. A clear

distinction is evident between the jet’s upper part, where
the weight of the fluid is balanced primarily by the viscous
force that resists stretching, and its lower part, where
the weight is balanced by inertia. The boundary between
the two is the point where the viscous and inertial terms

in (2b) are equal and occurs at a distance Bð�2=gÞ1=3 from
the nozzle, where B ¼ Bðv̂0Þ � 5:0. Because lb �
50–500ð�2=gÞ1=3 in our experiments, breakup always
occurs in the inertia-dominated part of the jet. The prefac-
tor B drops to zero for v̂0 � 1:219, meaning that the weight
is then balanced primarily (> 50%) by inertia everywhere
in the jet.

FIG. 1. Left: A jet of silicon oil with viscosity � ¼ 3500 cS
falling at a volumetric rate Q ¼ 0:29 ml s�1 from a nozzle with
an internal diameter d ¼ 5 mm. Right: Axial velocity vðzÞ in a
falling jet without surface tension [3], where lv ¼ ð�2=gÞ1=3 and
z ¼ z1 � �ð6�v0=gÞ1=2 is a virtual origin above the nozzle.
Short horizontal lines indicate the boundary between the
viscosity-dominated (above) and inertia-dominated (below) parts
of the jet.

FIG. 2. Breakup length L in the jetting regime as a function of
flow rate Q for three different viscosities and the same nozzle
diameter: 2r0 ¼ 2 mm. For clarity, only error bars >15% are
shown.
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The analytical solution of Ref. [3] can also be used to
estimate the magnitude of the neglected surface tension
term in (2b) relative to inertia and the viscous force. For the
parameter values of our experiments, it turns out that
surface tension is negligible in the inertia-dominated part
of the jet but not in the viscosity-dominated part. However,
because the viscosity-dominated part of the jet is very short
compared to the breakup length, we are justified in using
the solution of Ref. [3] as our base state.

To model the fluctuating environment surrounding the
jet, we introduce small perturbations with different initial
wave numbers k0 at different points along the jet, i.e., at
different times t0, since the fluid element in question exited
the nozzle. Each of these perturbations will grow to Oð1Þ
amplitude at some distance zbðk0; t0Þ from the nozzle, at
which point the jet will break. We posit that the observed
breakup length lb is the minimum value of the function
zbðk0; t0Þ.

Next, we recall that the exponential growth rate � of
small long-wavelength perturbations of wave number k on
the surface of a jet of constant radius r is [13]

�¼
�
�

r3�

�
1=2

��
k̂2ð1� k̂2Þ

2
þ9

4
�2

Ohk̂
4
�
1=2�3

2
�Ohk̂

2
�
; (3)

where k̂ ¼ kr and �Oh ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�=�r

p
is the Ohnesorge num-

ber. We now assume that (3) applies at all points along the
jet if r ¼ rðzÞ and k ¼ kðzÞ are interpreted as the local
values of the jet radius and perturbation wave number,
respectively. Because the base flow stretches fluid elements
at a rate A�1 _A, rðzÞ and kðzÞ are related to their values at
the initial position z0 by kðzÞr2ðzÞ ¼ kðz0Þr2ðz0Þ. To obtain
the total growth of the perturbation, the growth rate (3)
must be integrated along Lagrangian paths, taking into
account the variation of r and k. The integrated growth
rate is [14]

Z t

t0

�ðk0; �Þd� ¼ �

Q

Z z

z0

r2ð	Þ�½rð	Þ; kð	Þ	d	

� sðk0; z0; zÞ; (4)

where k0 ¼ kðz0Þ and the time integral has been trans-
formed to a spatial one using d� ¼ d	=v � �r2d	=Q.
The total growth of perturbations is the exponential of (4).

Now, suppose that breakup occurs when the quantity
sðk0; z0; zÞ reaches a critical value scr. Because zb ¼
zbðk0; z0Þ, we have the implicit equation scr ¼
s½z0; k0; zbðz0; k0Þ	 � �sðz0; k0Þ. Differentiating this equa-
tion with respect to z0, we obtain

@�s

@z0
¼ @s

@z0
þ @s

@zb

@zb
@z0

¼ 0: (5)

However, the condition of minimal breakup length requires
@zb=@z0 ¼ 0, and so (5) implies @s=@z0 ¼ 0. This deriva-
tive can now be evaluated using the definition (4) for s,
noting that the dependence on z0 enters only through the

lower limit of integration. We thereby find that the optimal
growth rate at the initial position z0 is �½rðz0Þ; k0	 ¼ 0,
whence (3) implies that the optimal initial wave number is
k0 ¼ 1=rðz0Þ. We can therefore write the integrated growth
rate as a function of z0 and zb alone, viz.,

sðz0; r�1ðz0Þ; zbÞ � Sðz0; zbÞ: (6)

Next, differentiate the equation �sðz0; k0Þ ¼ scr with respect
to k0 to obtain

@�s

@k0
¼ @s

@k0
þ @s

@zb

@zb
@k0

¼ 0: (7)

However, the condition of minimal breakup length requires
@zb=@k0 ¼ 0, whence (7) reduces to @s=@k0 ¼ 0. This in
turn implies @S=@z0 ¼ 0 because k0 ¼ 1=rðz0Þ. The prob-
lem of finding the most dangerous perturbation therefore
reduces to solving the two simultaneous equations

Sðz0; zbÞ ¼ scr;
@S

@z0
ðz0; zbÞ ¼ 0 (8)

for z0 and zb, which we did using standard MATLAB

routines.
To compare the theoretical predictions with our obser-

vations, we first plot the dimensionless breakup lengths�b

as a function of the dimensionless viscosity �� for our 87

experiments (Fig. 3). To calculate a theoretical curve to
compare with these data, we fix �� ¼ 1:0 and �r ¼ 1:5,

the (logarithmic) mean values of those parameters for the
experiments. We then adjust scr iteratively until the theo-
retical curve best fits the data for log10�� � 1:3. The

result is the solid line labeled�b in Fig. 3 and corresponds
to scr ¼ 8:86. The fit to the data is good for �� � 1:3

(68 experiments) but poor for the 19 experiments with
larger values, all but three of which correspond to long
jets with lb > 3 m. We speculate that this is due to the
extreme thinness (as low as r ¼ 7 
m) attained by these
long jets, which may render them more susceptible to
perturbations than the theory predicts.
When�� � 3, the curves of�b vs�� predicted by the

theory have a significant dependence on ��, which varies

over about 2 orders of magnitude among our experiments
(color scale in Fig. 3). To illustrate that dependence, Fig. 3
also shows theoretical curves calculated for �� ¼ 0:25

(dotted line) and 8.0 (dashed line), both with scr ¼ 8:86.
The theoretical curves also depend in principle on �r, but
that dependence is negligible for the parameters of our
experiments.
Finally, Fig. 3 also shows the theoretically predicted

distance z0 at which a perturbation is most dangerous,

nondimensionalized as �z ¼ z0ðg=Q2Þ1=5. It is smaller
than the dimensionless breakup length �b by 1–3 orders
of magnitude, depending on the value of ��. We now ask

whether z0 is within the inertia-dominated or the viscosity-
dominated portion of the jet’s base state. By comparing the
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curve �z (��) in Fig. 3 with the analytical solution of

Ref. [3] for the base state, we find that z0 moves from the
inertia-dominated part of the jet for small �� to the

viscosity-dominated part for large ��. The point of tran-

sition is indicated by the short vertical bar in Fig. 3.
High-viscosity limit.—A simple scaling argument yields

an asymptotic expression for the breakup length in the high-
viscosity limit �Oh 
 1, where the Rayleigh-Plateau
growth rate (3) reduces to �� �=ð�rÞ. Now, because
most of the jet is in the inertia-dominated regime (free

fall), its radius at a distance H below the nozzle is r�
ðQ2=gHÞ1=4. The growth rate at this distance is therefore

�� ð�=�ÞðgH=Q2Þ1=4. Now, the time required for a fluid

element to fall through the distance H is �� ðH=gÞ1=2.
Breakup occurs at the distance H � lb, where the
Rayleigh growth time ��1 becomes smaller than the fall
time, viz.,

lb ¼ C

�
gQ2�4

�4

�
1=3

or �b ¼ C�4=3
� ; (9)

where C is a constant. C can be determined from our WKB
analysis by expanding the integral expression for S in the
limit �Oh 
 1. This permits (8) to be solved analytically
for lb, yielding an expression of the form (9) with

C ¼ ð9scrÞ4=3=ð2�2=3Þ � 4:36s4=3cr . The dashed line in
Fig. 3 shows the asymptotic expression (9) with scr ¼ 8:86.
Conclusion.—The resolution of the paradox pointed out

in the introduction is now clear: Viscosity plays completely
independent roles in the axial momentum balance of the
steady basic state and in the growth of perturbations about
that state. The analytical solution of Ref. [3] for the basic
state shows that viscous forces are negligible in the inertia-

dominated part of the jet z 
 ð�2=gÞ1=3, which represents
>90% of the jet’s length in most of our experiments.
However, this does not imply that the effect of viscosity
can be neglected in the expression (3) for the Rayleigh-
Plateau growth rate. That expression has two limits,

depending on the Ohnesorge number �Oh ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�=�r

p
: a

viscosity-independent limit �� ð�=�r3Þ1=2 for �Oh � 1
and a (less familiar) viscosity-dominated limit �� �=�r
for �Oh 
 1. To determine which limit is relevant for our
experiments, we used the solution of Ref. [3] to calculate
�Ohðr ¼ rbÞ � �b

Oh for each experiment, where rb is the

jet radius at the distance z ¼ zb where the jet breaks up. We
thereby find that �b

Oh 2 ½0:65; 2160	 and that 66 of our

87 experiments have �b
Oh > 10. It is therefore not surpris-

ing that the viscosity has a strong influence on the breakup
lengths we observe.
We thank E. Villermaux and S. Le Dizès for helpful

discussions and S. H. Hosseini for help with the
experiments.
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FIG. 3 (color online). Comparison of observed and theoreti-
cally predicted breakup lengths. The circles represent observed
dimensionless breakup lengths �b ¼ lbðg=Q2Þ1=5 for 87 experi-
ments, with their values of �� ¼ ð�=�ÞðQ4g3Þ�1=5 indicated by

colors. The solid line labeled ‘‘�b’’ represents the predicted
breakup length for �� ¼ 1:0, �r ¼ 1:5, and scr ¼ 8:86. The

dotted and dashed lines are the same as the solid line, but for
�� ¼ 0:25 and 8.0, respectively. The dashed line at the upper

right represents asymptotic expression (9) with scr ¼ 8:86. The
solid line labeled ‘‘�z’’ represents the predicted dimensionless
distance �z ¼ z0ðg=Q2Þ1=5 at which the perturbation introduced
is most dangerous. The vertical bar shows where z0 moves from
the inertia-dominated to the viscosity-dominated portion of the
jet as �� increases.
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