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We report on the dynamic behavior of strongly nonlinear discrete materials with anomalous strain-

softening behavior. Rarefaction solitary waves found in numerical calculations agree well with the exact

solution to the continuum wave equation. Compression pulses generated by impact quickly disintegrate

into a leading rarefaction solitary wave followed by an oscillatory wave train containing localized

excitations. Such behavior is favorable for metamaterials design of shock absorption layers as well as

tunable information transmission lines for scrambling of acoustic information.
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Discrete periodic materials with a normal power-law
relationship between force and displacement, F / �n for
n > 1, have been shown to support compression solitary
waves [1–9]. When dynamic forces between masses are
significantly larger than the initial force applied to the
system, these materials exhibit strongly nonlinear behav-
ior, which has been considered in recent investigations of
shock mitigation barriers, waveguides for acoustic
switches, and rectification [3,4,6,10]. These materials can
support compression solitary waves traveling in one-
dimensional chains or ordered two- and three-dimensional
arrays of particles [1,2]. Conversely, a discrete chain with
an interaction law exhibiting a general softening behavior
(first considered in Ref. [11]) supports rarefaction solitary
waves and rarefaction shock-like waves if dissipation is
present [2]. Stationary rarefaction waves were investigated
in magnetized Hall plasmas and are thought to explain
observed anomalous behavior due to a changing electric
field [12]. Depression solitary waves have also been inves-
tigated previously in liquid Hg [13].

An elastic or viscoelastic softening behavior is exhibited
by a decreasing of elastic modulus with strain in a wide
range of materials ranging from polymer foams [14,15]
and rubber [16,17] to actin networks in biological tissues
[18,19]. In general, these materials share several common
characteristics under compressive loading including: a vis-
coelastic softening behavior due to configuration changes
in polymer chains [15–17,20] or the elastic collapse of cell-
wall structures in polymer foams [14,21–24]. Both soften-
ing phenomena are followed by a stiffening behavior
attributed to the bulk resistance to further deformation.

Here, we consider a simple one-dimensional metamate-
rial composed of point masses interacting with a force-
displacement relationship, F / �n for n < 1. For example,
these materials can be assembled in a chain from stainless
steel cylinders separated by flat layers of low-density poly-
mer foam or solid rubber. In this case, the ‘‘rigid’’ steel
cylinders can be considered as point masses m connected

by a ‘‘soft’’ and massless nonlinear spring. Analogous
strongly nonlinear metamaterials have recently been inves-
tigated with stainless steel cylinders separated by polymer
o-rings [7,8,25,26]. The Hamiltonian of this system may be
written in terms of the displacement of the cylinders, ui,

H ¼ P
i½m _u2i

2 þUð�i;iþ1Þ� where �i;iþ1 ¼ ui � uiþ1. The

potential energy of interacting ith and (iþ 1)th particles
is defined as

Uð�i;iþ1Þ ¼ Ki;iþ1=ðnþ 1Þfð�i;iþ1 þ si;iþ1Þnþ1

� sni;iþ1½ðnþ 1Þ�i;iþ1 þ si;iþ1�gþ; (1)

where theþ outside of the curly brackets indicate that only
positive values of relative displacement � are taken and
Ki;iþ1 is the effective stiffness constant corresponding to

the power-law interaction between the ith and (iþ 1)th
particles. The parameter s in Eq. (1) is introduced to
account for initial slope of the force-displacement relation-
ship for the ith location (F ¼ �dUð�Þ=d�). The resulting
equation of motion is

€ui ¼ Ai�1;i½ð�i�1;i þ si�1;iÞn � sni�1;i�þ
� Ai;iþ1½ð�i;iþ1 þ si;iþ1Þn � sni;iþ1�þ; (2)

where Ai�1;i ¼ Ki�1;i=m and 0< n< 1. Initial displace-
ments caused by an external force may also be included in
ui. This form of the force-displacement relationship, when
cast as stress and strain, is very similar to the simple power-
law model for the compression of solid rubber found in
Refs. [15,16].
The long-wave approximation for Eq. (2) is derived

assuming that the distance between centers of masses, a,
is significantly less than the characteristic length of prop-
agating wave L. To simplify the following discussion it
will be assumed that parameters A and s are uniform. The
long-wave approximation to Eq. (2) is presented below,
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where c2n ¼ Aanþ1 is a parameter with units of speed. The
long-wave sound speed c0 in the chain of particles is found
through the linearization of Eq. (3), c20 ¼ nc2nð�0 þ
s=aÞn�1. Equation (3) may be reduced to a nonlinear
ordinary differential equation for the specific case of a
stationary wave propagating with speed V,

y�� þ y� y�ðn�3Þ=ðnþ1Þ þ y�ðn�1Þ=ðnþ1ÞC ¼ 0: (4)

In Eq. (4), y is a reduced form of the strain (� ¼ �ux),

y ¼ ðcn=VÞðnþ1Þ=ðn�1Þðs=aþ �Þðnþ1Þ=2, C is a constant, and

� is the normalized coordinate � ¼ x=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðnþ 1Þ=np

.
Equation (4) can be rewritten as an equation for a non-

linear oscillator moving in an effective potential field
d2y=d�2 ¼ �dWðyÞ=dy where WðyÞ is defined as

WðyÞ ¼ 1

2
y2 � nþ 1

4
y4=ðnþ1Þ þ C1y

2=ðnþ1Þ: (5)

For an anomalous interaction between particles,
0< n< 1, rarefaction solitary waves exist when C1 ¼
Cðnþ 1Þ=2 is bound by [2,11]

n2 � 1

2
nn=ð1�nÞ <C1 � n� 1

2

�
2n

nþ 1

�
n=ð1�nÞ

: (6)

The value of C1 defines system behavior between
weakly and strongly nonlinear regimes corresponding to
the lower and upper bound of C1, respectively.

Three curves in Fig. 1(a) show the potential field WðyÞ
for the strongly [curve (1)] and weakly [curve (3)]
nonlinear regimes. Along each of these curves we may
consider that a particle moves from its initial position in the
wave (y1, corresponding to �0) to ymin (related to �min) and

back to y1 [Fig. 1(a)]. An interesting value of y1 corre-
sponds to the case where the minimum of y is equal to zero,
which results in an expression that depends only on the

power-law exponent y1 ¼ ð2n=nþ 1Þð1þnÞ=2ð1�nÞ [2,11].
This special case is shown in curve (1) with n ¼ 1=2,C1 ¼
�1=6 [the upper bound ofC1 in Eq. (6)] and y1 ¼ ð2=3Þ3=2.
The variations in y are relatively large in strongly nonlinear
regimes [see curves (1) and (2) in Fig. 1(a)] and may be
infinitesimally small in the weakly nonlinear regime [see
curve (3) corresponding to C1 ¼ �0:1869] near the lower
bound value of C1 ¼ �0:1875 (for n ¼ 1=2).
Figure 1(b) shows numerical solutions of Eq. (4) for the

three values of C [where C ¼ 2C1=ðnþ 1Þ] corresponding
to the curves in Fig. 1(a). The width of the wave increases
in the weakly nonlinear case compared to the strongly
nonlinear cases [compare curves 1 and 2 to curve 3 in
Fig. 1(b)]. In addition, the shape of a strongly nonlinear
solitary wave with minimum strain equal to zero (when
s ¼ 0) is similar to strongly nonlinear solitary waves with
finite minimum strain [compare curves (1) and (2)].
It is interesting that a strain perturbation solution

of Eq. (3), (i.e., � ¼ �0 þ ��), results in a Korteweg-
deVries type depression solitary wave similar to the one
found in Ref. [13]. The weakly nonlinear solution is
� ¼ �0 � ��sech2½ðx� VtÞ=L� for n < 1 where �� ¼
6c0ðV � c0Þ=�, L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�=ð���Þp
, � ¼ ð1� nÞc20=ð�0 þ

s0=aÞ, and � ¼ a2c20=12. This also means that these

depression solitary waves are partial solutions to the sys-
tem described here. It should be mentioned that the inter-
action law between neighboring particles in Eq. (2) is
assumed nondissipative. We are primarily investigating
the solitary wave structure, which may be weakly attenu-
ating with dissipation while preserving its main features as
in Ref. [13] or be accompanied by a secondary shock-like
wave structure as in Ref. [27], which would require a
separate investigation.

FIG. 1 (color online). (a) Three curves for different values of C1 are shown for the potential function, Eq. (5), with n ¼ 1=2. Curve
(1): C1 ¼ �1=6 and the value of y1 corresponds to ð2=3Þ3=2. Curve (2): C1 ¼ �11=64 and y1 ¼ 0:517. Curve (3): C1 ¼ �0:1869 and
y1 ¼ 0:381. (b) Solution of Eq. (4) for corresponding values of C. The width of the wave is larger for smaller values of C. Each curve
starts at a different value of y1 shown by filled circle in part (a). Curve (1): C ¼ �2=9, y1 ¼ ð2=3Þ3=2. Curve (2): C ¼ �11=48,
y1 ¼ 0:517. Curve (3): C ¼ �0:2492, y1 ¼ 0:381. All three curves have been shifted horizontally for comparison.
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The exact solution for the long-wave approximation can
be found for the case where the minimum value of y is
equal to zero and C1 is given by the maximum value in
Eq. (6). In the system of reference moving with the wave
and centered at the minimum value of strain, an exact
solution can be obtained for n ¼ 1=2 and C1 ¼ �1=6 by

substituting Eq. (5) into � ¼ Ry
0 dy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2WðyÞp
giving

y ¼ ð2=3Þ3=2jtanh3ð ffiffiffi
2

p
�=6Þj: (7)

The corresponding equation for the strain is (for s ¼ 0),

� ¼ �0tanh
4ðx=aÞ: (8)

The exact solution in Eqs. (7) and (8) predicts a sym-
metric cup-shaped pulse with a characteristic pulse length
equal to 7a for a cutoff of �=�0 ¼ 0:98. The pulse width
does not depend on the amplitude of the solitary wave
similar to the case for compressive solitary waves in a
‘‘sonic vacuum’’ where n > 1 [2]. Equation (7) is shown
in Fig. 1(b), curve (1), for n ¼ 1=2. In contrast to the
strongly nonlinear compression wave in a sonic vacuum,

the strongly nonlinear rarefaction waves defined by
Eqs. (7) and (8) are not compact solitary waves.
A closed form expression may be constructed for

strongly nonlinear solitary rarefaction waves for values
of 0< n< 1. Here, the amplitude is equal to the value of
y1 and the width of the wave depends on values of n,

y ¼
�

2n

nþ 1

�ð1þnÞ=2ð1�nÞ

�
��������tanhð1þnÞ=n

�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðnþ 1Þ=½nð1� nÞ�p
���������: (9)

The full-width at half-maximum (FWHM) in terms

of x=a is easily found for Eq. (9), FWHM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� nÞp

arctanh½2�n=ð1þnÞ�. Interestingly, a minimum
value of this FWHM corresponds to n ¼ 0:38 where
x=a ¼ 2:113. It is also interesting to find the relationships
between the phase speed V and the strains �0 and �min. The
phase speed can be found using the properties of the
potential function; Wðy ¼ yminÞ ¼ Wðy ¼ y1Þ and
@W=@yjy¼y1 ¼ 0, giving

Vr ¼ cn
�0 � �min

�
2½nðs=aþ �0Þnþ1 þ ðs=aþ �minÞnþ1 � ðnþ 1Þðs=aþ �0Þnðs=aþ �minÞ�

nþ 1

�
1=2

: (10)

In the case of a solitary rarefaction wave where �min ¼ 0, Eq. (10) becomes

Vs;r ¼ cn
�0

�
2½nðs=aþ �0Þnþ1 þ ðs=aÞnþ1 � s=aðnþ 1Þðs=aþ �0Þn�

nþ 1

�
1=2

: (11)

The ratio of the solitary wave speed Vs;r to the sound

speed c0 is greater than 1 for 0< n< 1, meaning the
solitary rarefaction wave speed is supersonic [2].

The shape and speed of the wave in numerical calcula-
tions of a discrete chain must be compared to Eqs. (8)–(11)
because they were derived from the long-wave approxima-
tion. The corresponding numerical calculations are per-
formed in Matlab using ode45 to integrate the system of
equations in Eq. (2). Energy is conserved within 10�10%
and momentum is conserved within 10�12% in each simu-
lation. The boundary conditions are such that the chain is
initially compressed with an external constant force and the
point masses (with m ¼ 5 g) are in their initial static posi-
tions due to the action of this force. The force is held
constant in time and the first particle is given an initial
velocity to simulate impulse loading directed either toward
or against the rest of the chain. Each calculation uses
the constants for a uniform chain; n ¼ 1=2, �0 ¼ 0:033,

s ¼ 5� 10�5 m, and A ¼ 1� 105 N=m1=2 unless speci-
fied otherwise. An experimentally reasonable value for a is
6 mm where the deformable element is 1 mm and the rigid
mass is 5 mm in length. When the deformable elements are
strained by 20%, this gives �0 ¼ 0:033. Figure 2 shows the
results from simulations using 10001 discretemasses where

constant force of F0 ¼ 4:37 N is applied to both the first
and last particle. The first and last particles were given an
initial velocity v0 ¼ �0:775 and 0:775 m=s, which pro-
duces two colliding solitary rarefaction waves with a mini-
mum strain equal to zero [Fig. 2(a) corresponds to
t ¼ 2:52 s]. The result of the applied static compression
force and specific initial velocities is the formation of two
solitary rarefactionwaves. The rarefactionwaves propagate
faster than their oscillatory wave trains and separate from it
within approximately 80 particles. The minimum of the left
wave occurs at the 4927th and 4946th particles at 2.51 and
2.52 s, respectively, giving an average speed of 11:78 m=s,
which differs from the predicted speed of 11:72 m=s from
Eq. (11) within 1%. Figure 2(b) demonstrates the inelastic
scatter behind the two leading pulses after the collision of
two rarefaction solitary waves. Figure 2(c) shows a com-
parison between the right-movingwave fromFig. 2(b) and a
solitary rarefaction wave traveling in a chain without a left-
moving wave. The phase shift and oscillations behind the
main pulse are not present in the latter case.
It is important to validate the analytical expressions

given in Eqs. (7)–(9) by comparison with the discrete
simulations because the width of the solitary wave is
comparable to the distance between particles. Figure 3
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shows this comparison for n ¼ 1=5, 1=2, and 4=5. The
same initial strain, stiffness value (A ¼ 1� 105 N=mn),
and slope parameter (s ¼ 0) were used in each calculation.
The force and velocity necessary for the creation of a
strongly nonlinear rarefaction wave were f0 ¼ 91 N, v0 ¼
�1:69 m=s for n ¼ 1=5, f0 ¼ 7:1 N, v0 ¼ �0:729 m=s
for n ¼ 1=2, and f0 ¼ 0:549 N, v0 ¼ �0:313 m=s for

n ¼ 4=5. The calculations for a discrete system show
that there are approximately seven particles comprising
the pulse for n ¼ 1=2 and n ¼ 1=5 and nine particles for
n ¼ 4=5. It is interesting that the difference between the
discrete strain values and Eq. (9) is smaller for n ¼ 4=5
than for n ¼ 1=2, indicating: (1) discreteness plays an
important role that is clearly observed by comparison
between the exact solution and numerical calculations for
n ¼ 1=2 and (2) alternative approaches may be pursued to
better approximate the pulse shape and wave speed to
account for these differences [28].
An illustrative example of impact is shown in Fig. 4

where an impact velocity of 3 m=s was given to the first
particle, to which a constant force is applied and the
position of the last particle was fixed. The initial compres-
sion pulse quickly attenuates due to nonlinear dispersion
and the first rarefaction pulse immediately behind it
eventually becomes the leading pulse after traveling ap-
proximately 475 particles. This behavior is quite counter-
intuitive because impact loading is expected to result in a
leading compression pulse for normal materials.
The arrow (1) in Fig. 4 points to a slowly moving wave

packet (i.e., an envelope solitary wave) indicating that
breather modes may exist in chains with an exponent
n < 1. This observation suggests that the presence of
breather modes is not restricted to discrete chains with
hardening power laws, where a periodic assembly or
mass impurity is requisite [29–31]. Multiple types of waves
may be supported by this system including Korteweg-
deVries, envelope type, and strongly nonlinear solitary

FIG. 3 (color online). Strain from discrete simulations with
1000 particles for n ¼ 1=5 (green open square), 1=2 (blue open
circle), and 4=5 (red plusses) is compared to Eq. (9) (see
corresponding lines). The relevant material parameters were
s ¼ 0 and A ¼ 1� 105. Equation (9) slightly overestimates
the width (FWHM) of the solitary rarefaction wave.

FIG. 2 (color online). Development of a two solitary rarefac-
tion strain waves in a chain of 10001 particles compressed with a
static force of 4.37 N corresponding to a force-displacement
relationship with n ¼ 1=2, s ¼ 5� 10�5 m, A ¼ 1�
105 N=m1=2. The initial velocities for the first and last particles
are �0:775 and 0:775 m=s. (a) The leading rarefaction pulse
separates from the following oscillatory wave train (not shown)
after travelling approximately 80 particles. (b) Two rarefaction
pulses have crossed leaving an oscillatory tail behind. (c) Results
from (b) are compared curve (1) with a right-moving wave in a
chain where there is no collision with a left-moving wave curve
(2). The minimum strain value of curve (1) is 4� 10�4 and the
phase shift in time between curves (1) and (2) is 0.5 ms.

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

(1)

t=0.03 s

t=0.16 s

t=0.26 s

FIG. 4. Impact of a discrete chain of 500 particles at 3 m=s.
The chain was compressed with a static force of 4.37 N with
n ¼ 1=2, s ¼ 5� 10�5 m, A ¼ 1� 105 N=m1=2. At time
t ¼ 0:03 s a compression pulse is followed closely by an oscil-
latory wave train (strain offset by 0.12). At time t ¼ 0:16 s a
rarefaction pulse is shown passing the compression pulse (strain
offset by 0.06). At time t ¼ 0:26 s the initial disturbance quickly
disintegrates due to nonlinear dispersion into wave packets,
periodic waves, and the leading rarefaction solitary wave after
traveling approximately 475 particles. The strain is offset by 0.12
for visual clarity. The arrow (1) is pointing to a slowly moving
wave packet (i.e., an envelope solitary wave).
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and shock-like rarefaction waves, which may be important
for energy transport or new types of information carriers in
electrical system analogs.

It is interesting that solitary rarefaction waves may arise
by specifying a velocity toward or away from the rest of the
chain and suggests different methods to test materials
experimentally. This is not possible for strongly nonlinear
compression waves in granular media where n > 1 due to
the absence of a restoring force.

We investigated rarefaction waves in nonlinear periodic
systems with a softening general power-law relationship
between force and displacement to understand the dynamic
behavior of this class of metamaterials. An exact closed
form expression describing the shape of the strongly non-
linear rarefaction wave for n ¼ 1=2 agrees well with nu-
merical simulations of discrete system. The width of the
investigated strongly nonlinear solitary wave does not
depend on the amplitude and it is smallest for n ¼ 0:38
in investigated interval of values of n. The agreement
between the theoretical and numerical pulse speed of the
waves is within 1%. It was shown that the solitary wave
speed was supersonic and is inversely proportional to the
initial strain of the system. Impact on a compressed chain
of particles generated a rarefaction solitary wave as the
leading pulse.

The authors wish to acknowledge the support of this
work by the U.S. NSF (Grant No. DCMS03013220).
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