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We demonstrate the existence of the spectral phase shift a pulse experiences when it is subjected to

spectral focusing. This �
2 phase shift is the spectral analog of the Gouy phase shift a 2D beam experiences

when it crosses its focal plane. This spectral Gouy phase shift is measured using spectral interference

between a reference pulse and a negatively chirped parabolic pulse experiencing spectral focusing in a

nonlinear photonic crystal fiber. To avoid inherent phase instability in the measurement, both reference

and parabolic pulses are generated with a 4-f pulse shaper and copropagate in the same fiber. We measure

a spectral phase shift of �
2 , reaffirming its generality as a consequence of wave confinement in the spatial,

temporal and spectral domains.
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In 1890 Louis-Georges Gouy [1] reported for the first
time the existence of an extra phase contribution �G to the
propagative phase kz (k being the wave vector and z the
distance) a beam experiences when it travels through its
focus. Besides its experimental demonstration, Gouy could
explain the phase advance postulated by Fresnel for the
secondary Huygens wavelets created from a primary wave
front in wave diffraction theory [2]. Although the Gouy
phase anomaly is well described by Maxwell wave propa-
gation theory, there have been several attempts to give a
more intuitive description of this phenomenon [3–5]. As
already noted by Gouy, this phase anomaly exists for any
and all waves and is equal to�G ¼ �

2 for each dimension of

transverse confinement: a 3D beam having a 2D wave front
thus experiences a �

space
G of � when crossing its focus

whereas a 2D beam having a 1D wave front experiences
a �

space
G of only �

2 . The analogy between spatial diffraction

and temporal dispersion has been known for many years
[6,7]. This space-time duality is due to the mathematically
identical equations describing spatial and temporal wave
propagation [8] and many diffractive optical elements have
temporal analogs that perform parallel functions in the
time domain [9]. Considering the simple case of a cylin-
drical lens with a focal length f (we restrict here our
analysis to 1D for simplicity and adopt an e�i!T field
time dependence), the well-known spatial focusing arises
from successively imposing onto a 2D field a quadratic

phase e�iðk=2fÞx2 in real space and a quadratic phase

e�iðd=2kÞk2x in momentum space, representing a lens and
propagation over a distance d to the focus, respectively,
[Fig. 1(a)]. As described above, this 1D spatial confine-
ment is accompanied by the spatial Gouy phase
�

space
G ¼ �

2 .

As a spatial lens imposes a quadratic phase in space x, a
time lens shall produce a quadratic phase in time t. This

can be done with a phase modulator or by self phase
modulation (SPM) acting on a parabolic pulse [10]. As a
consequence, and analogously to a spatial lens, a pulse
can be confined in time by imposing a temporal quadratic

FIG. 1 (color online). Space, time, and spectral lenses.
(a) Spatial confinement arises from successively imposing a
quadratic phase in real space and in k space and the spatial
phase experiences a �=2 Gouy phase shift. (b) Time confinement
arises from successively imposing a quadratic phase in time and
in frequency and the temporal phase experiences a �=2 phase
shift. (c) Spectral confinement arises from successively imposing
a quadratic phase in frequency and in time, and it raises the
question of the existence of a �=2 spectral phase shift.
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phase (e�ið!0=fT ÞT2
) followed by a quadratic phase in fre-

quency (eiðz�2=2Þ!2
) [Fig. 1(b)], the latter representing noth-

ing but a dispersive delay line. In the above written
expressions fT ¼ !0

d2�ðTÞ=dT2 is the focal time (� being the

phase), !0 the pulse central frequency, �2 ¼ d2�
d!2 (� is the

propagation constant along z), T and z are the time and
spatial variables in the traveling-wave coordinate system
(traveling at the pulse group velocity), respectively [8].
Quite interestingly this confinement in time is also accom-
panied by a phase shift�time

G besides the propagative phase

�!0T and it is analytically shown in textbooks that
�time

G ¼ �
2 for a temporal Gaussian pulse propagating in a

linear dispersive medium [11]. �time
G could be appropri-

ately named the ‘‘temporal Gouy phase’’ because the
equations describing the evolution in time of a (temporal)
Gaussian pulse in a dispersive medium are mathematically
equivalent to the ones describing the evolution in space of a
(spatial) Gaussian pulse, both acquire a phase shift �time

G

(�space
G ) as they cross their time (space) confinement point.

Less known than spatial and temporal confinement,
spectral confinement is also possible [12]. A spectral
lens is nothing but a quadratic phase in frequency

eiðz�2=2Þ!2
) followed by a temporal quadratic phase

e�ið!0=fT ÞT2
) [Fig. 1(c)]. Such a spectral confinement is

usually achieved with a dispersive delay line followed by
SPM. SPM imposes a phase shift proportional to the tem-
poral intensity envelope, so the best confinement is reached
for a parabolic pulse which acquires the desired
T2-dependent phase when subjected to SPM. This way
the pulse spectrum narrows, reaching a minimal value at
the spectral focal plane and then broadens upon further
propagation. Spectral focusing is often named spectral
compression or spectral narrowing in the literature
[13–15]. The ‘‘momentum lens’’ is missing from our dis-
cussion to complete the general picture of the Gouy phase
shift in all direct and inverse space-time coordinates. The
momentum lens is, however, trivially realized by inverting
lens and free-space propagation in Fig. 1(a).

Everything is now in place to address the following

question: Is there a spectral phase shift �frequency
G on the

spectral phase when a pulse experiences spectral focusing?
Following the space-time analogy described earlier

�
frequency
G should be appropriately named the ‘‘spectral

Gouy phase’’ and its value is expected to be �
2 as spectral

focusing proceeds in 1D. It is the aim of this Letter to
address this question both experimentally and theoretically.

To generate the analog of the Gouy phase in the spectral
domain we use the experimental setup sketched in
Fig. 2. The laser is a SESAM-modelocked laser (t-Pulse,
Amplitude Systems, 50 MHz, �0 ¼ 1035 nm, 150 fs)
which emits a pulse Alaser (A denotes the complex field

and ~A its Fourier transform); a standard 4-f pulse shaper
[16] with a double 320-pixel liquid-crystal stripe array
(SLM-320b, JenOptik) multiplies the transfer function

Hð!Þ on ~Alaserð!Þ, resulting in the shaped field
~Ashapedð!Þ. Ashaped is then launched into a 155 cm long

photonic crystal fiber (PCF). The PCF output AðoutÞ
shaped is

characterized by a background-free autocorrelator and an
optical spectrum analyzer. Before performing the experi-

ment, j ~Alaserð!Þj2 was measured and was found to be well
described by a sech2-function with a full width at half
maximum (FWHM) of 8 nm. To compensate for residual
dispersion of the optical elements before the PCF, the pulse
shaper was programmed with the transfer function that
gave a transform-limited AlaserðTÞ just before the PCF as
verified by autocorrelation. This transfer function was
added as an offset to all the transfer functions used in the
following. Due in part to diffraction on the pixelized spatial
light modulator (SLM) [17], in part to space-time coupling
[18] and subsequent focusing by the PCF coupling lens
[19,20], the combined system of pulse shaper and PCF
exhibits a limited time window wðTÞ. In other words, the
coupling efficiency into the PCF of a certain part of Ashaped

depends on its time coordinate T. wðTÞ was determined by
programming the pulse shaper with a delay Hð!Þ ¼
expði!TÞ and recording

R j ~Ashapedð!Þj2d! versus T. We

found that wðTÞ was well described by a Gaussian with a
FWHM of 3340 fs. wðTÞ was finally normalized for further
use. In analogy with spatial focusing, we would like to
measure the phase of the output pulse as a function of
propagation distance (and hence degree of spectral com-
pression) in the PCF. We work, however, with a PCF of
fixed length, and hence choose to change the amount of
nonlinear phase accumulated by SPM by changing the
input power at a fixed fiber length.
We make an ansatz for the negatively chirped parabolic

pulse to be generated by the pulse shaper

AparabolðTÞ ¼
8><
>:

ffiffiffiffiffiffi
Pp

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

T2
p

r
ei�T

2 �1 � T=Tp � 1

0 otherwise

; (1)

where Pp is the peak power, Tp the half full-width of

jAparabolðTÞj2, and � the chirp parameter. For simplicity

FIG. 2 (color online). Sketch of the experimental setup. SLM,
spatial light modulator; AC, autocorrelator; optical spectrum
analyzer, optical spectrum analyzer.
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the carrier frequency is set to zero. In practice, we pad
the leading and trailing edge of AparabolðTÞ with Gaussian

tails at the FWHM to avoid discontinuities in its
derivative. In the experiments, we used Tp¼1414 fs

and �¼3�10�6 fs�2. The Fourier transform of

AparabolðTÞ [normalized to wðTÞ and
ffiffiffiffiffiffi
Pp

p
], ~Aparabolð!Þ ¼

FT�1½wðTÞ�1AparabolðTÞP�1=2
p � is then computed and the

required transfer function is found as

Hparabolð!Þ ¼
~Aparabolð!Þ
~Alaserð!Þ : (2)

When we program the pulse shaper with Hparabol a nega-

tively chirped parabolic pulse Aparabol is thus generated. In

order to measure the phase shift incurred by Aparabol during

the propagation through the PCF, we generate a weak
reference pulse Aref which is a replica of Alaser delayed
by �T and phase shifted by �� with respect to Aparabol and

whose transfer function is

Hrefð!Þ ¼ Crefe
i!�Tþi��: (3)

Cref and�twere kept constant at 0.20 and 1414 fs through-
out. Note that Aref was kept sufficiently weak to avoid
nonlinear effects occurring during its propagation in the
PCF. Furthermore �T was chosen long enough to avoid
any interaction with Aparabol within the PCF [21].

The experiment proceeds as follows. We launch
Ashaped ¼ Aref þ Aparabol into the PCF. The field at the out-

put of the PCF is AðoutÞ
shaped ¼ AðoutÞ

ref þ AðoutÞ
parabol where AðoutÞ

parabol

has experienced spectral focusing and a possible spectral
Gouy phase shift. The two are inherently phase stabilized

as they are generated together by the SLM. AðoutÞ
parabol and

AðoutÞ
ref interfere on the optical spectrum analyzer and from

the spectral interference fringes, their relative phase �ð!Þ
is determined. In practice, to minimize artifacts, the spec-
tral interference is measured for 16 equidistant values of
�� and�ð!Þ is found from a sinusoidal fit to the 16 points
at every wavelength in the spectrum. This was done for
several different input powers Pp from which the depen-

dence of �ð!Þ upon Pp was determined. Note that Aref is

the same throughout all the experiments so that, after
having propagated through the PCF, the output pulse,

AðoutÞ
ref does not change its phase between experiments.

The calculations of pulse propagation in the PCF were
done using a nonlinear Schrödinger equation (NLSE)
assuming no loss, instantaneous nonlinearity and disper-
sion up to fifth order [22]. The solid core silica PCF had a
core size of 2:5 �m surrounded by a hexagonal hole
pattern (hole size of 200 nm with a pitch of 1 �m). The
exact value of the PCF nonlinearity parameter � was
unknown, but a reasonable value of � ¼ 0:047 ðWmÞ�1

was assumed. The measured PCF dispersion curve was
fitted by a fourth-order polynomium [23].

The results of the experiments and comparison with the
model are shown in Fig. 3. In Fig. 3(a) is presented the

measured j ~AðoutÞ
parabolð!Þj2 versus Pp and in Fig. 3(b) a nu-

merical simulation of the same using the same parameters
as in the experiment. The agreement between measured
and calculated spectra is excellent. The optimal focus is
obtained for Pp ¼ 50 W where the spectrum is focused to

a width FWHM of �2 nm—a fourfold narrowing. For Pp

greater than 50 W the spectral focus is inside the PCF. The
measured �ð!0Þ at the central frequency !0 ¼ 2�c=�0

of ~AðoutÞ
parabol is plotted in Fig. 3(c) (squares) versus Pp; the

calculated phase extracted from the calculation is also
shown (solid line). Once again, excellent agreement is
found. We see that both increase almost linearly with Pp

as expected in view of the solution of the NLSE. We
remind readers that the solution to the NLSE in absence
of dispersion is [11]

AðL; TÞ ¼ Að0; TÞei�nl ; (4)

where the so-called nonlinear phase �nl ¼ �PpL, which

would produce a straight line in Fig. 3(c). However, in the
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FIG. 3 (color online). Comparison of experimental and calcu-
lated results. (a) Measured PCF output spectra versus intrafiber
peak power; (b) simulation of PCF output parameters using the
same parameters as the experiment; (c) (open square) the mea-
sured relative phase �ð!0Þ between parabolic pulse and refer-
ence pulse (!0 is the pulse central frequency); (solid line) the
calculated relative phase using the same parameters as the
experiment; and (dashed line) the propagative phase obtained
from the calculations; (d) same as (c) but with the propagative
phase subtracted. Pulse parameters: Tp ¼ 1414 fs; � ¼
�0:000003 fs�2. PCF parameters: � ¼ 0:047 ðWmÞ�1; L ¼
1:55 m. The error bars denote one standard deviation.
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presence of dispersion, the peak power of the pulse pro-
gressively changes and the expression must be modified to
�nl ¼

R
�PpðzÞdz. We infer PpðzÞ from the calculation,

use it to calculate �nl, and plot it in Fig. 3(c) (blue or
dashed line). �nl does not take into account spectral con-
finement effects and, indeed, it is clearly seen that the �nl

cannot account for the entire phase shift incurred by the
pulse in the PCF. To make the supplementary phase shift
stand out more clearly, in Fig. 3(d) we plot the measured
phase �ð!0Þ minus �nl (squares) as well as the simulated
phase minus�nl (black or solid line). A phase jump of�=2
is accumulated between Pp ¼ 30 W and Pp ¼ 70 W,

which is the power value range for which the spectrum
comes to a focus in Figs. 3(a) and 3(b). This phase jump,

denoted �
frequency
G , is the spectral analogue of the Gouy

phase shift and arises as a result of the 1D spectral
confinement.

To gain insight into the origin of �
frequency
G and how it

develops let us consider the NLSE in the absence of loss

and dispersion @Aðz;TÞ
@z ¼ i�jAðz; TÞj2Aðz; TÞ. For simplicity

let us consider a transform-limited parabolic field intensity

jAðz; TÞj2 ¼ Ppð1� T2

T2
p
Þ, where Pp and Tp are the pulse

power and width. The NLSE reads

@Aðz; TÞ
@z

¼ i

Lnl

Aðz; TÞ � i

LnlT
2
p

T2Aðz; TÞ; (5)

where Lnl ¼ 1
�Pp

is the nonlinear length. The first right-

hand side term of Eq. (5) stands for the nonlinear prop-
agative phase responsible for the straight line in Fig. 3(c)
[Aðz; TÞ ¼ Að0; TÞei�Ppz] whereas the second term imposes
a temporal quadratic phase modulation on the incoming

field amplitude Aðz;TÞ¼Að0;TÞe�ðiT2zÞ=ðLnlT
2
pÞ] as sketched

in Fig. 1(c). We aim now at deriving the spectral amplitude
evolution

~Aðz;!Þ ¼
Z þ1

�1
Að0; TÞei!T�ðiT2zÞ=ðLnlT

2
pÞdT (6)

as the field propagates down the fiber. In order to pursue the
analytical derivations, we consider an incoming Gaussian

pulse ~Að0; !Þ ¼ e�!2=ð2�2
0
Þ with �0 the half width at 1=e

intensity. While not equivalent to the experiment in which
a parabolic pulse was employed, the situation considered in
the model could be achieved experimentally by letting a
weak, Gaussian pulse copropagate with a perpendicularly
polarized strong, parabolic pulse. Because we have con-
sidered a transform-limited Gaussian pulse, the spectral
focusing arises at z ¼ 0 in this simple parabolic model.
The spectral divergence from the spectral focus is then

found by propagation of ~Að0; !Þ and the spectral conver-
gence up to the focus by backpropagation. Inserting the

Fourier transform Að0; TÞ ¼ �0

�
ffiffi
2

p e��0T
2=2 of ~Að0; !Þ into

Eq. (6) and performing some algebra one obtains

~Aðz; !Þ ¼ 1

ð1þ i z
Ls
Þ1=2 e

�!2=½2�2
0ð1þiz=LsÞ�; (7)

an expression very similar to the ones that are derived in
textbooks in the case of a focused paraxial Gaussian beam
(space domain) or the temporal confinement of a Gaussian
beam (time domain). In Eq. (7) Ls ¼ �2

0T
2
pLnl=2 can be

viewed as the spectral focusing length and plays a similar
role to the Rayleigh length in the space domain. Rewriting
Eq. (7) in amplitude and phase gives

~Aðz; !Þ ¼
ffiffiffiffiffiffiffiffiffiffi
�0

�ðzÞ

s
e�!2=½2�2ðzÞ�ei�ðz;!Þ (8)

with �ðzÞ ¼ �0ð1þ z2

L2
s
Þ1=2 and

�ðz; !Þ ¼ !2

2�2ðzÞ
z

Ls

� 1

2
arctan

�
z

Ls

�
: (9)

The amplitude of ~Aðz;!Þ remains Gaussian throughout the
propagation with �ðzÞ being the ‘‘spectral waist’’. After a
propagation over z ¼ Ls the half width at 1=e intensity isffiffiffi
2

p
�0 and while propagating further to z ¼ þ1 the beam

expands with a spectral divergence �spec ¼ �0

Ls
. The phase

shows a quadratic dependence in ! indicating that the
beam is rapidly chirped after the spectral focus at z ¼ 0.
The second right-hand side term in Eq. (9) is the spectral

Gouy phase shift �
frequency
G ¼ � 1

2 arctanð zLs
Þ and amounts

to a �=2 jump when the beam travels from z ¼ �1 to
þ1. In practice, and as their space and time counterparts,
the �=2 spectral Gouy phase shift is accumulated between
z ¼ �Ls and z ¼ þLs.
From simple analogies between the spatial focusing of

light and the temporal confinement a pulse experiences
when it is subjected to dispersion, we have addressed the
question of the existence of a spectral analog of the Gouy
phase shift in spectral focusing. Using a 4-f pulse shaper to
generate a negatively chirped parabolic pulse together with
a weak reference pulse, we have been able to measure the
phase change a beam experiences when it is spectrally
focused in a nonlinear optical fiber. Our experiment reveals
that, on top of the nonlinear phase, a phase shift anomaly

�
frequency
G exists that is equal to �

2 . The measurements were

found in good agreement with the numerical solution of the
nonlinear Schrödinger equation. Furthermore, the analyti-
cal derivation of the interaction between a strong parabolic

pulse and a weak Gaussian pulse revealed that �frequency
G

develops over a distance Ls that plays a similar role to the
Rayleigh distance in spatial focusing. Our findings dem-
onstrate that the Gouy phase shift is in no way uniquely
associated with linear propagation since spectral focusing
follows nonlinear propagation; it is a general feature of
wave confinement in some direct or inverse coordinate,
whether spatial or temporal.

PRL 110, 143902 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

143902-4



We thank Jonathan C. Knight, Bath University, for sup-
plying the PCF. We are grateful to Amplitude Systems for
making the t-Pulse laser available for the measurements.
The authors acknowledge the financial support from the
the Centre National de la Recherche Scientifique (CNRS)
Weizmann NaBi European Associated Laboratory, the
High Council for Scientific and Technological
Cooperation between France-Israel (2012 Grant), the
French Research Agency (ANR grant SOFICARS), and
the Region Provence Alpes Cote d’Azur.

*Corresponding author.
herve.rigneault@fresnel.fr

[1] L. G. Gouy, C. R. Acad. Sci. Paris Ser. IV 110, 1251
(1890).

[2] M. Born and E. Wolf, Principles of Optics (Pergamon
Press, New York, 1980).

[3] R.W. Boyd, J. Opt. Soc. Am. 70, 877 (1980).
[4] S. Feng and H.G. Winful, Opt. Lett. 26, 485 (2001).
[5] T.D. Visser and E. Wolf, Opt. Commun. 283, 3371 (2010).
[6] A. Papoulis, Systems and Transforms with Applications in

Optics (McGraw-Hill, New York, 1968), p. 200.
[7] S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin,

Sov. Phys. JETP 28, 748 (1969).
[8] B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).

[9] J. van Howe and C. Xu, J. Lightwave Technol. 24, 2649
(2006).

[10] B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630
(1989).

[11] G. P. Agrawal, Nonlinear Fiber Optics (Academic Press,
San Diego, 2001), 3rd ed., p. 68, Eq. 3.2.12.

[12] R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[13] S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and

H. L. Fragnito, Opt. Lett. 18, 699 (1993).
[14] E. R. Andresen, J.M. Dudley, C. Finot, D. Oron, and

H. Rigneault, Opt. Lett. 36, 707 (2011).
[15] J. Fatome, B. Kibler, E. R. Andresen, H. Rigneault, and

C. Finot, Appl. Opt. 51, 4547 (2012).
[16] A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[17] M.M. Wefers and K.A. Nelson, J. Opt. Soc. Am. B 12,

1343 (1995).
[18] J. Paye and A. Migus, J. Opt. Soc. Am. B 12, 1480 (1995).
[19] B. J. Sussman, R. Lausten, and A. Stolow, Phys. Rev. A 77,

043416 (2008).
[20] F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130,

034302 (2009).
[21] E. R. Andresen, J. Dudley, D. Oron, C. Finot, and H.

Rigneault, J. Opt. Soc. Am. B 28, 1716 (2011).
[22] G. P. Agrawal, Nonlinear Fiber Optics (Academic Press,

San Diego, 2001).
[23] Polynomium coefficients: �2¼18510fs2=m; �3¼

�53000fs3=m; �4¼194000fs4=m; �5¼�351800fs5=m;
and �6 ¼ 291800 fs6=m.

PRL 110, 143902 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

143902-5

http://dx.doi.org/10.1364/JOSA.70.000877
http://dx.doi.org/10.1364/OL.26.000485
http://dx.doi.org/10.1016/j.optcom.2010.04.099
http://dx.doi.org/10.1109/3.301659
http://dx.doi.org/10.1109/JLT.2006.875229
http://dx.doi.org/10.1109/JLT.2006.875229
http://dx.doi.org/10.1364/OL.14.000630
http://dx.doi.org/10.1364/OL.14.000630
http://dx.doi.org/10.1103/PhysRevA.17.1448
http://dx.doi.org/10.1364/OL.18.000699
http://dx.doi.org/10.1364/OL.36.000707
http://dx.doi.org/10.1364/AO.51.004547
http://dx.doi.org/10.1063/1.1150614
http://dx.doi.org/10.1364/JOSAB.12.001343
http://dx.doi.org/10.1364/JOSAB.12.001343
http://dx.doi.org/10.1364/JOSAB.12.001480
http://dx.doi.org/10.1103/PhysRevA.77.043416
http://dx.doi.org/10.1103/PhysRevA.77.043416
http://dx.doi.org/10.1063/1.3058478
http://dx.doi.org/10.1063/1.3058478
http://dx.doi.org/10.1364/JOSAB.28.001716

