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We show that in the presence of a rapidly modulated dielectric permittivity with a large modulation

depth (Kapitza medium) a novel and robust regime of diffractionless electromagnetic propagation occurs.

This happens when the mean value to depth ratio of the dielectric profile is comparable to the small ratio

between the modulation period and the wavelength. We show that the standard effective medium theory is

inadequate to describe the proposed regime and that its occurrence is not substantially hampered by

medium losses. We check the feasibility of the proposed regime by means of a large modulation depth

metal-dielectric layered medium whose electromagnetic behavior is analytically investigated.
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Subwavelength imaging and diffractionless propagation
are major photonics subjects that have attracted, in the past
decade, a renewed research interest triggered by the advent
of metamaterials [1,2] since a negative index metamaterial
slab was shown to support an overall superlensing effect.
Remarkably, without resorting to exotic and hardly avail-
able magnetic properties, it has been realized that a metal
slab can provide subwavelength imaging as well [3,4].
A refinement of such a superlens has been proposed in
the form of a metal-dielectric layered composite obtained
by alternating two materials with permittivities whose real
parts have opposite signs [5,6]. Different superlensing
mechanisms occur in the canalization regime [7–10] and
in hyperbolic metamaterials [11–15].

In this Letter we show that a novel regime of diffraction-
less propagation occurs for transverse magnetic (TM) waves
propagating, in the long wavelength regime, through rapidly
modulated stratifiedmediawith a large dielectricmodulation
depth (Kapitzamedia). The considered electromagnetic situ-
ation is conceptually equivalent to that of the mechanical
inverted pendulum whose pivot point is subjected to high-
frequency vertical oscillations (Kapitza pendulum) [16,17],
since these oscillations produce a rapidly varying contribu-
tion to the Lagrangian function with a large modulation
depth. The concept has been successfully extended and
implemented in the general context of quantum and non-
linear physics [18–27]. In all the situations, even though the
system is not able to follow the rapid external oscillations,
these are still able to affect the average system dynamics by
means of additional slowly varying potential contributions
(e.g., the rapid external oscillations yield the stabilization of
the inverted state of the mechanical pendulum). In the elec-
tromagnetic situation thatwe consider in this Letter, the rapid
and deep dielectric spatial modulation entails the diffraction-
less propagation of the averaged electromagnetic field.

The electromagnetic field amplitudes E ¼ Exðx; zÞêx þ
Ezðx; zÞêz, H¼Hyðx;zÞêy associated with monochromatic

TM waves satisfy Maxwell’s equations

�@xEz þ @zEx ¼ i!�0Hy; @zHy ¼ i!�0�xEx;

@xHy ¼ �i!�0�zEz; (1)

where � ¼ diag½�x; �y; �z� is the medium relative dielectric

tensor and the time dependence e�i!t has been assumed.
Here we consider a specific medium periodically modu-
lated along the z axis whose dielectric permittivity �x ¼
�z ¼ � admits the Fourier series expansion

� ¼ �m þ X
n�0

�
an þ bn

�

�
einðK=�Þz; (2)

where �m and (an þ bn=�) are the Fourier coefficients
whereas 2��=K is the spatial period. Here � is a dimen-
sionless parameter that we have introduced to explore
the asymptotic electromagnetic behavior pertaining to the
limit �!0where both the grating amplitude and its spatial
frequency are very large (assuming that K � k0 ¼ !=c).
Note that the coefficients an account for a contribution to
the modulation which is not large, and it is essential for
allowing the model to avoid unrealistic features as a per-
mittivity imaginary part rapidly oscillating between large
negative and positive values. Since electromagnetic propa-
gation is here characterized by two very different scales
(i.e., the radiation wavelength and the permittivity modu-
lation period), it is natural to let each electromagnetic field
component separately depend on z and Z ¼ z=� (multi-
scale technique where Z is the fast coordinate [28]) and to
represent it as a Taylor expansion up to first order in �, i.e.,

Aðx; z; ZÞ ¼ ½ �Að0Þðx; zÞ þ ~Að0Þðx; z; ZÞ�
þ �½ �Að1Þðx; zÞ þ ~Að1Þðx; z; ZÞ�; (3)

where A ¼ Ex, Ez, or Hy, the superscripts (0) and (1) label

the order of each term whereas the overline and the
tilde label the averaged and rapidly varying contributions
to each order, respectively. Substituting the field compo-
nents of this form into Eqs. (1), each equation yields a
power series in � whose various orders are evidently the
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superposition of a slowly varying (independent of Z) and
a fast (dependent on Z) contribution, all of which can
be independently balanced. From the lowest order (which

is here ��1) we obtain ~Eð0Þ
x ¼ 0, �Eð0Þ

z ¼ 0, ~Eð0Þ
z ¼ 0, and

~Hð0Þ
y ¼ ð!�0=KÞPn�0ðbn=nÞeinKZ �Eð0Þ

x , or, in other words,
the dominant contribution to the x component of the elec-
tric field is slowly varying, whereas the z component of the
electric field has no zeroth order. The order �0 of the first
of Eqs. (1) yields

@z �E
ð0Þ
x ¼ i!�0

�Hð0Þ
y (4)

and @Z ~E
ð1Þ
x ¼ i!�0

~Hð0Þ
y , which in turn, with the help of

the obtained expression for ~Hð0Þ
y , yields ~Eð1Þ

x ¼
ðk20=K2ÞPn�0ðbn=n2ÞeinKZ �E. The slowly varying part of

the order �0 of the second of Eqs. (1), together with the

obtained expression for ~Eð1Þ
x yield

@z �H
ð0Þ
y ¼ �i!�0�eff �E

ð0Þ
x ; (5)

where

�eff ¼ �m þ k20
K2

X
n�0

b�nbn
n2

: (6)

To summarize we have obtained that the leading term
of the TM electromagnetic field is slowly varying and

transverse electromagnetic (TEM), i.e., E ’ �Eð0Þ
x ðx; zÞêx,

H ’ �Hð0Þ
y ðx; zÞêy, and, in addition, its components satisfy

Eqs. (4) and (5) so that the field undergoes diffraction-
less propagation and experiences the uniform effective
permittivity �eff .

As for any effective medium theory (EMT), the field
is here slowly varying since it cannot follow the rapid
medium dielectric modulation. However, the fact that the
longitudinal component vanishes is a very unique and
important feature of the proposed regime which has a
simple physical explanation arising from the combination
of the first Maxwell equation and the large depth of the
dielectric modulation. In fact, a very deep and rapidly
modulated dielectric response would produce volume po-
larization charges too strong to be screened by the electric
field, an incompatibility avoided by the condition Ez ’ 0.
For example, assuming � ¼ �m þ ðb=�Þ cosðKz=�Þ, the
equation r � D ¼ 0 yields �ð@xEx þ @zEzÞ � ðbK=�2Þ�
sinðKz=�ÞEz ¼ 0 from which it is evident that, since
the first term self-consistently scales as 1=�, Ez has to be
proportional to � for mitigating the divergence of the
factor 1=�2 in the second term. The diffractionless propa-
gation of the leading contribution to the electromagnetic
field in the considered regime is a consequence of its TEM
structure since, as is well known, TMwaves with vanishing
longitudinal components do not undergo diffraction [as is
evident from Eqs. (1)]. It should be stressed that the super-
resolution mechanisms reported in the literature are based
on the requirement that �z ! 1 [since, when combined

with the third of Eqs. (1), this condition yields Ez ! 0 and
hence diffractionless propagation], a condition that has
to be fulfilled by exploiting the standard EMT and which
is essentially hampered by medium absorption [8]. On the
other hand, in the regime we are investigating here, the
longitudinal effective permittivity �z is not even defined
and it is evident from the above presented multiscale
analysis that the longitudinal field component Ez vanishes
regardless of the medium losses (since we have not
assumed the permittivity to be real). We conclude that
the occurrence of diffractionless propagation within
Kapitza stratified media is very robust and substantially
not hampered by medium losses. Note that, in analogy to
the potential governing the averaged dynamics of the
Kapitza pendulum, the effective permittivity of Eq. (6) is
the sum of the average permittivity plus a contribution
arising from the rapidly varying part of the dielectric
modulation. Such an effective medium response, together
with the TEM field structure, clarifies that the effective
medium theory we are considering here (Kapitza EMT)
is fundamentally different from the standard effective
medium theory (standard EMT) for layered media whose
main result is that the effective principal permittivities are
�x ¼ h�i ¼ �m and �z ¼ h��1i�1. The difference between
the two regimes is also assured by the fact that the standard
effective medium results can be simply derived by using
the above discussed multiscale technique in the presence
of the dielectric profile of Eq. (2) with bn ¼ 0, i.e., without
the large modulation depth contribution to the permittivity.
Remarkably, the improvement of the standard EMT con-
tained in the approach of Elser et al. in Ref. [29], also
clearly shows that the standard EMT is not adequate when
the modulation depth is large, a condition characterizing
the Kapitza EMT discussed in the present Letter [30].
In order to check the predictions of the proposed Kapitza

EMT, we have considered the reflection and transmission
of TM plane waves from a slab filled by a Kapitza stratified
medium, as sketched in Fig. 1(a). The dielectric modula-
tion is along the z axis with period ��where � ¼ 2�=k0 is
the vacuum radiation wavelength and � is the above intro-
duced small parameter, whereas the slab thickness L is a
multiple of the period ��. The unit cell comprises N
homogeneous layers of thicknesses ��=N and the dielec-
tric permittivity of the jth layer (j ¼ 1; :::; N) is

�j ¼ �m þ
�
1

�
þ i��

�
cos

�
2�

N
ðj� 1Þ

�
; (7)

where �m is the mean value of the dielectric permittivity
and �� is responsible for the (not large) modulation of
medium absorption. The corresponding profile of the
slab dielectric permittivity is evidently of the kind of
Eq. (2) (with K ¼ k0) and its real and imaginary parts
are sketched, within a unit cell, in Figs. 1(b) and 1(c),
respectively [where �0m ¼ Reð�mÞ and �00m ¼ Imð�mÞ]. The
check of the Kapitza EMT has been performed by choosing
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� ¼ 100 �m, �m ¼ 0:05þ 0:05i, �� ¼ 0:025, N ¼ 10,
and � ¼ 1=60, which is a realistic situation since �60<
Reð�Þ< 60 and 0:025< Imð�Þ< 0:075 (thus avoiding
the use of active media) and since the layers’ thickness
��=N ’ 166 nm is fully feasible. The scattering process
of TM waves by the considered layered medium admits a
full analytical description (by means of the transfer-matrix
method) and in Fig. 1(d) we have plotted the exact
profiles (solid line) of the transmissivity defined as T ¼
jEtj2=jEij2 [see Fig. 1(a) for the definition of the field
amplitudes] as a function of the transverse wave vector
kx ¼ k0 sin� for various slab thicknesses L. On the
other hand, Eqs. (4) and (5) are easily solved to yield the
transmissivity

T ¼ jcosðkzLÞ � iF sinðkzLÞj�2; (8)

where kz¼k0
ffiffiffiffiffiffiffiffi
"eff

p
andF¼½ ffiffiffiffiffiffiffiffi

"eff
p

cos�þ1=ð ffiffiffiffiffiffiffiffi
"eff

p
cos�Þ�=2.

After evaluating the Fourier coefficients of the considered
dielectric profile, Eq. (6) yields �eff ¼ 0:5339þ 0:05i and
in Fig. 1(d) we have reported various profiles (dashed lines)
of the resulting transmissivity of Eq. (8) pertaining to the
Kapitza EMT. In addition, the standard EMTwould describe
the slab as an anisotropic medium with dielectric permit-
tivities �x ¼ h�i ¼ 0:05þ 0:05i and �z ¼ h��1i�1 ¼
ð�7:205þ 7:194iÞ � 103 and, in Fig. 1(d), we have plotted
various profiles (dash-dotted lines) of the the corresponding

transmissivity which coincides with Eq. (8) with kz ¼
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xð1� sin2�

�z
Þ

q
and F ¼ 1

2 ðk0�x cos�kz
þ kz

k0�x cos�
Þ. Note that

the agreement between the exact predictions and those
based on the Kapitza EMT is remarkable whereas the
standard EMT completely fails. It is interesting to note
that in the considered situation the ratio between the layer

thicknesses ��=N and the smallest layer wavelength, ap-
proximately

ffiffiffiffi
�

p
�, is ’ ffiffiffiffi

�
p

=N ’ 0:013 which is much

smaller than one, a condition which assures the validity of
the standard EMT in layered media when the modulation
depth is not large.
It is well known that medium absorption plays a very

detrimental role in the observation of the canalization
regime [8] as well as on all the other mechanisms support-
ing diffractionless propagation. In order to investigate the
effect of medium losses on the Kapitza regime we are
discussing here, we have extended the scattering experi-
ment of Fig. 1(a) to encompass even evanescent waves
and we have evaluated, for a number of slabs characterized
by different absorption efficiencies, the quantity T ¼
jEtj2z¼L=jEij2z¼0 as a function of the transverse wave vector

kx (which, for jkxj< k0, coincides with the above
discussed slab transmissivity and, for jkxj> k0, entails
information on the slab efficiency to transport evanescent
waves). In Fig. 2 we report the exact logarithmic plot
of T together with the corresponding profiles predicted
by the Kapitza and the standard EMTs for three different
slabs of thickness L ¼ 1:66� which are identical to those
considered in Fig. 1 but characterized by different values
of �m and ��: (a) �m¼0:05þ0:005i, �� ¼ 0:0025;
(b) �m¼0:05þ0:05i, �� ¼ 0:025; (c) �m ¼ 0:05þ 0:5i,
�� ¼ 0:025. The corresponding dielectric permittiv-
ities predicted by the Kapitza and the standard EMTs
are (a) �eff¼0:5339þ0:0050i, �x¼0:05þ0:005i, �z¼
ð�14:256þ1:424iÞ�103; (b) �eff ¼ 0:5339þ 0:05i,
�x¼0:05þ0:05i, �z¼ð�7:205þ7:194iÞ�103; (c) �eff ¼
0:5339þ0:05i, �x¼0:05þ0:5i, �z¼ð�0:154þ1:425iÞ�
103. From Fig. 2 we note that in all the three considered
situations the Kapitza EMT predictions largely agree with
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FIG. 2 (color online). Logarithmic plot of the quantity T ¼
jEtj2z¼L=jEij2z¼0, as a function of the transverse impinging

momentum kx, generalizing the slab transmissivity of Fig. 1(d)
to encompass transport of evanescent waves for three slabs of
thickness L ¼ 1:66� and � ¼ 1=60, with different mean values
and modulation depths of the permittivity imaginary part.

FIG. 1 (color online). (a) Layered slab and TM waves scatter-
ing geometry. (b), (c) Real and imaginary parts of the dielectric
permittivity profile within the unit cell. (d) Comparison between
the exact slab transmissivity (solid lines) and those predicted by
the Kapitza (dashed lines) and the standard EMT (dash-dotted
lines and semitransparent interpolating surface).
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the exact phenomenology whereas the standard EMT is
inadequate and, most importantly, that this happens almost
regardless of the medium absorption. Considering that in
panel (c) of Fig. 2 the mean value and the modulation
depth of the permittivity imaginary part are 100 times greater
than those of panel (a) of Fig. 2, we restate that the Kapitza
regime is very robust against medium losses, a very distinct
and important feature which does not characterize the
other diffractionless propagation regime presented in the
literature.

From Fig. 2, it should also be stressed that the agreement
between the Kapitza EMT and the exact phenomenology
is, in the considered situation, very good and robust even
for evanescent waves (jkxj> k0), an essential requirement
for achieving super resolution. As a further validation of
this statement, in Fig. 3 we plot the exact equifrequency
contour (EFC) of some typical Kapitza media [see Eq. (7)]
with �m ¼ 0:05 and �� ¼ 0 at � ¼ 100 �m obtained by
imposing the Bloch condition on the field amplitudes
evaluated through the transfer-matrix method [29]. Note
that both the � ¼ 1=40 and the � ¼ 1=60 EFCs are very
flat over a large portion of the evanescent wave spectrum.
On the other hand the � ¼ 1=20 EFC effectively deviates
from the constant nondiffracting value of kz roughly for
jkxj> 5k0 and therefore diffraction is expected to be not
fully suppressed. Even though we have mainly focused on
the novel diffractionless propagation regime, it is worth
checking the subwavelength imaging features of a Kapitza
layered slab. Specifically we have considered a slab whose
unit cell has the dielectric distribution of Eq. (7) with
�m¼0:05þ0:005i, �� ¼ 0:0025, N ¼ 10, and � ¼ 1=60
[thus coinciding with the case of Fig. 2(a)]. The radiation
wavelength is � ¼ 100 �m and the unit cell thickness is
� ¼ �� ¼ 1:67 �m. We have considered a slab with
M ¼ 82 unit cells since its resulting width L ¼ M� ¼
135:66 �m is very close to the width LF ¼ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reð�effÞ

p ¼
136:85 �m for which the Kapitza homogeneous slab gov-
erned by Eqs. (4) and (5) with �eff ¼ 0:5339þ 0:005i
[from Eq. (6)] has its second Fabry-Perot resonance.
Using the transfer-matrix method, we have evaluated the
slab point-spread-function PSF(x) according to which

the transmitted magnetic field profile HðTÞ
y ðx; LÞ can be

expressed as the convolution of PSFðxÞ with the incident

magnetic field HðIÞ
y ðx; 0Þ, or HðTÞ

y ðx; LÞ ¼ PSFðxÞ �
HðIÞ

y ðx; 0Þ [31]. In Fig. 4(a) we plot the comparison

between the slab output and input images for an impinging
magnetic field whose profile consists of two Gaussians of
equal width � ¼ �=20 whose separation distance is 4�,

i.e., HðIÞ
y ðx; 0Þ ¼ H0½e�ðx�2�Þ2=�2 þ e�ðxþ2�Þ2=�2�. Apart

from a slight decrease of the peak’s height due to medium
absorption, the outcoming image is clearly a very accurate
copy of the incoming one. To appreciate such an imaging
result, we have reported in Fig. 4(b) the effect of vacuum
propagation on the above incoming field, and the complete
deterioration of the considered subwavelength image is
evident. For completeness, in Fig. 4(c) we have plotted
the analogous fields comparison for a slab identical to that
of panel (c) of Fig. 2 but with � ¼ 1=20 whose subwave-
length imaging efficiency is evident even in the presence
of a slight image deterioration resulting from the small
sidelobes [32].
In conclusion, we have proposed and discussed a novel

diffractionless propagation regime which is not fundam-
entally affected by medium losses and it is very robust
against the tailoring of the medium dielectric properties.
Diffraction suppression is here achieved through propaga-
tion in a medium whose dielectric permittivity is rapidly
modulated with a large modulation depth so that the physi-
cal underpinnings of the proposed setup are in many
respects an elaboration of those that in mechanics are
associated with the stabilization of the inverted pendulum
(the Kapitza pendulum, from which we take the name
Kapitza EMT for our approach).
This research has been funded by the Italian Ministry of

Research (MIUR) through the ‘‘Futuro in Ricerca’’ FIRB-
Q98 Grant No. PHOCOS-RBFR08E7VA.
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FIG. 4 (color online). (a) Imaging of a subwavelength two-
peaked shape at � ¼ 100 �m by a Kapitza slab [as reported in
Fig. 1(a) with the unit cell dielectric profile of Figs. 1(b) and 1(c)]
characterized by �m ¼ 0:05þ 0:005i, �� ¼ 0:0025, N ¼ 10,
� ¼ 1=60, and L ¼ 135:66 �m. (b) Diffraction of the subwa-
velength two-peaked shape after L ¼ 135:66 �m vacuum propa-
gation. (c) Same as in panel (a) but with � ¼ 1=20.
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