
Cavity Optomechanics of Levitated Nanodumbbells: Nonequilibrium Phases and Self-Assembly

W. Lechner,1,2,* S. J.M. Habraken,1,2 N. Kiesel,3 M. Aspelmeyer,3 and P. Zoller1,2

1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, 6020 Innsbruck, Austria
2Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
3Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics,

University of Vienna, Boltzmannagsse 5, 1090 Vienna, Austria
(Received 17 January 2013; published 5 April 2013)

Levitated nanospheres in optical cavities open a novel route to study many-body systems out of solution

and highly isolated from the environment. We show that properly tuned optical parameters allow for the

study of the nonequilibrium dynamics of composite nanoparticles with nonisotropic optical friction.

We find optically induced ordering and nematic transitions with nonequilibrium analogs to liquid crystal

phases for ensembles of dimers.

DOI: 10.1103/PhysRevLett.110.143604 PACS numbers: 42.50.Wk, 07.10.Cm, 73.22.�f

Introduction.—The interaction between light and matter
has been one of the central driving forces behind recent
developments in condensed matter physics with nanopar-
ticles [1]. Optical tweezers [2,3] and confocal microscopy
[4] have made it possible to study many-body systems of
nanoparticles in solutions in real time and with single-
particle resolution [5–8]. Recently, it has been proposed
to optically levitate and cool single nanospheres inside an
optical cavity [9–12]. While in the realm of soft-matter
physics, this may provide an alternative to confinement in a
solution [13], from a quantum-optics point of view such a
setup provides a versatile alternative to conventional opto-
mechanical systems [14–16]. Combined with optomechan-
ical cooling and trapping techniques of single particles,
this may even open the possibility to study fundamental
aspects of quantum mechanics with mesoscopic objects
[11,17,18]. Here, we focus on the dynamics of many,
interacting particles in the presence of optomechanical
cooling. While many-body systems with nonuniform cool-
ing have been studied with atoms and ions [19], the pos-
sibility to create complex structures with nanospheres
offers completely new opportunities to study pattern for-
mation and self-assembly. With novel synthesis methods it
is now possible to design compound structures ranging
from dimers to networks of nanospheres connected by
springlike biomolecules [20–26]. A distinctive feature of
the self-assembly of composite particles is that the emerg-
ing patterns are characterized not only by their positions,
but also by their individual orientations [27,28]. The non-
equilibrium self-assembly of such nanostructures in the
presence of nonisotropic optical cooling is an open ques-
tion, and holds the promise of a new means to optical
control of pattern formation and novel nonequilibrium
liquid crystal phases.

In thisLetter, we study the dynamics and self-assembly of
levitated nanosphere dimers in the presence of optomechan-
ical friction inside a two-mirror cavity. The particles are
subject to thermal forces and coupled to a cavity mode

which is driven by an external laser and damped by the
cavity decay. The optomechanical interaction gives rise to
an optical potential and a cooling force along the cavity axis.
By compensating the potential with a second optical mode,
the remaining optomechanical effect is friction along the
cavity axis. Figure 1 illustrates the system we have in mind.
The nanospheres are harmonically trapped and confined to
the xy plane, where x is the cavity axis. We show that the
steady-state orientation of a single dimer is nonuniform in
the presence of optical friction. Remarkably, the full range
of preferred orientations from 0 to �=2 is accessible by
appropriately tuning the experimental parameters. In a
many-body system, the presence of additional direct inter-
actions between the individual nanospheres, leads to
competition between the natural triangular ordering of a

FIG. 1 (color online). (a) Levitated dimers composed of
dielectric nanospheres in a laser driven optical two-mode cavity
with laser strengths �1;2, a decay rate �, and an additional

harmonic trap Vtrap. The orientation of the dimers is denoted

�, their equilibrium separation x0, and their frequency �. The
direct pair interaction between the nanospheres leads to liquid
crystal phases with rich dimer patterns. (b) The particles are in
contact with a thermal bath with coupling �. The cavity-particle
interaction results in strong additional dissipation in one spatial
direction only, which acts as an effective zero temperature bath
�opt. (c) Comparison of the relevant time scales: We assume that

�opt is faster than � and find three qualitatively different regimes,

which give rise to different orientations, depending on the
relative timescales.

PRL 110, 143604 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

0031-9007=13=110(14)=143604(5) 143604-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.143604


two-dimensional crystal and dissipation-induced ordering.
Compared to other approaches to dynamical ordering of
dimers, such as shear [29] or static electric fields [30], this
method offers additional advantages: (a) the orientation
depends on the frequency of the vibrational mode of the
dimers which allows for individual ordering in multi-
species systems and (b) in addition to ordering at the level
of single particles, nonuniform friction also leads to novel
liquid crystal phases at themany-body level (see Fig. 3).We
identify three relevant time scales in this system: the
frequency of the vibrational mode of the dimers �, the
optomechanical damping rate �opt, and the rate of thermal-

ization �. For limiting cases we present analytic results on
the ordering of individual dimers and numerical results on
the nonequilibrium many-body dynamics.

Model.—We consider a system ofN=2 dimers consisting
of N nanospheres, trapped inside an optical cavity. The
Hamiltonian is decomposed as H ¼ Hsys þHom with

Hsys ¼
XN

i¼1

�
p2
i

2m
þVtrapðxiÞ

�
þXN=2

i¼1

m�2

2
ðjx2i�1 � x2ij � x0Þ2

þ�0

X
i�j

Vintðjxi � xjjÞ; (1)

the system Hamiltonian. Here, m is the mass of the nano-
spheres, xj and pj are the position and momentum of

particle j, respectively, Vtrap is the trapping potential, �

the frequency of the vibrational mode of the dimers, x0 is
the equilibrium separation and Vint is the direct dipolar pair
interaction, which can be tuned by the parameter �0 [6]. In
a frame, rotating with the laser drive, the optomechanical
Hamiltonian is given by

Hom ¼ ��ðx1 . . .xNÞjaj2 þ�ðaþ a�Þ þ Vc; (2)

where aðtÞ [ ffiffiffiffiffi
Js

p
] is a normal variable, which describes the

dynamics of the optical mode, � [
ffiffiffiffiffiffiffiffi
J=s

p
] characterizes the

drive strength, Vc is a second compensating potential, and
� ¼ !d �!ðx1; . . . ;xNÞ is the detuning from the cavity
resonance with !d the drive frequency. The interaction
derives from the electric polarizability �p of the nano-

spheres [9,10], which, for subwavelength particles, gives
rise to a position-dependent cavity resonance frequency
!ðx1; . . . ;xNÞ ¼ !0 � ðgC=2ÞPjjFðxjÞj2, where !0 is the

bare cavity frequency. FðxÞ is the normalized mode func-
tion of the cavity mode, C is the mode volume, and g ¼
�p!0V=C is the optomechanical coupling strength, which

is proportional to the volume of the particle V. We assume
that the cavity mode can be approximated by a standing

wave FðxÞ ’ �
ffiffiffiffiffiffiffiffiffi
2=C

p
sinðkxÞ, where k is the wave number

and � is the polarization in the yz plane, so that
�ðx1; . . . ;xNÞ ¼ �ðx1; . . . ; xNÞ.

The full dynamics of the optical part, including decay
from the cavity, is described by the equations of motion for
the optical amplitude _a ¼ ½i�ðx1; . . . ; xNÞ � ��aþ i�,
where � is the field decay rate. The drive can be eliminated

by the transformation a ! �þ a0 with � ¼ �=ð ��þ i�Þ
the average amplitude and �� ¼ ð!d �!Þ the detuning
from the bare cavity resonance. The equation of motion

for the transformed optical amplitude is _a0 ¼ ði ���
�Þa0 þ ið�ðx1; . . . ; xNÞ � ��Þð�þ a0Þ. Substitution of a !
�þ a0 in the first term in Eq. (2) gives rise to four terms.
One of them corresponds to an effective optical potential
along the cavity axis Vðx1; . . . ; xNÞ ¼ �j�j2�ðx1; . . . ; xNÞ,
which can be compensated by Vc of the second optical
mode. For the choice of a mode separated by one free
spectral range from !, the mode function in the focal

range of the cavity is approximately given by GðxÞ ’
�

ffiffiffiffiffiffiffiffiffi
2=C

p
cosðkxÞ, where � is the polarization. When �

and � are orthogonal, the two modes do not interfere
and the effective potentials add up, i.e., VðxjÞ ¼
�g½j�1j2sin2ðkxjÞ þ j�2j2cos2ðkxjÞ�, where �1;2 are the

amplitudes of the first and second mode, respectively. For
j�1j ¼ j�2j ¼ j�j, the potential is independent of xj and

the forces cancel. The second mode is driven on resonance
and therefore does not lead to additional damping (or
amplification).
We find the equations of motion of the nanosphere

positions and momenta

_xi ¼ pi=m;

_pi ¼ �@Hsys

@xi

þ ð�a0� þ ��a0 þ ja0j2Þ @�ðx1; . . . ; xNÞ
@xi

:

(3)

The cavity decay rate � sets a finite time scale for the
cavity to respond to changes in the particle positions so that
the optomechanical feedback does not only depend on the
particle positions, but also on the particle momenta along
the cavity axis [14]. This gives rise to amplification

(for ��> 0) or damping (for ��< 0), respectively.
Optomechanical cooling of nanospheres has been studied
previously in the Lamb-Dicke regime [9], while here, we
focus on a different regime, similar to Ref. [31], in which the
particles move almost freely and the relevant frequency
stems from the modulation of the optical feedback force at
!mod ¼ 2kp=m. The damping force has resonances for
�� ¼ �j!modj, while in the regime we are interested in,

jpj � m ��=ð2kÞ, the cooling rate is approximately constant

�opt ’ 2g2j�j2k2 ���
mð ��2 þ �2Þ2 : (4)

With an additional thermal force, the equations of motion
take the form of modified Langevin equations (see Ref. [32])
with

m €xi ¼ �@Hsys

@xi
�mð�þ �optÞ _xi þ �xi ;

m €yi ¼ �@Hsys

@yi
�m� _yi þ �yi :

(5)
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Here, ðxi; yiÞ ¼ xi are the components of the position vector
of particle i, � is the rate of thermalization, and �x and �y

are mutually uncorrelated Langevin forces, as characterized
by h�x;yðtÞ�x;yðt0Þi ¼ kBTm��ðt� t0Þ.

Results.—We first focus on the dynamics of a single
dimer described by Eq. (5). Separating the dynamics into
the trivial center-of-mass motion and the relative coordi-

nates ðx1 � x2Þ=
ffiffiffi
2

p � ðx; yÞ, and to the extent that opto-
mechanical coupling between the particles can be

neglected, the nonlinear force is
@Hsys

@r ¼ �rm�2f1�
½2x0=ðx2 þ y2Þ�1=2g, where r ¼ ðx; yÞ and x0 is the dimer
separation. Figures 2(a)–2(c) show the steady state solu-
tions of the orientation of single dimers as a function of the
dimer frequency for various cooling rates from numerical
integration of Eq. (5). Remarkably, when exposed to uni-
directional friction, a loosely connected dimer, as well as a
rigid rotor, tends to align orthogonal to the direction of
friction, whereas a dimer of moderate stiffness aligns
parallel to it. This can be understood from three competing
effects which derive from the order of the relevant time
scales in the system (see Fig. 1(c)): ��1, ��1

opt and ��1.

While � and �opt set the scales of thermalization and

nonuniform friction, � sets the time scale at which the
degrees of freedom mix due to the nonlinear nature
of the force term. Assuming that �opt > �, there are

three limiting parameter regimes: (i) �opt � � � �,

(ii) �opt � � � �, and (iii) � � �opt � �. In the follow-

ing we analytically study these limiting cases and give an
intuitive explanation of this remarkable nonequilibrium
ordering phenomenon.
In (i) and (ii), �opt is the largest scale. Due to the

resulting separation of time scales of the motion in the x
and y directions, the steady-state distribution is of the form
Pðx; yÞ ¼ PðyjxÞPðxÞ. Here, PðyjxÞ is the normalized
steady-state distribution of the fast y direction given a
fixed x. Consequently, the average energy hVix ¼R1
�1 Vðx; yÞPðyjxÞ determines the distribution PðxÞ for

the x direction via a Markov process with the scaled
temperature Tx ¼ T�=ð�þ �optÞ, thus

Pðx; yÞ ¼ e�Vðx;yÞ=ðkBTÞ
R1
�1 dye�Vðx;yÞ=ðkBTÞ

e�hVix=ðkBTxÞ
R1
�1 dxe�hVix=ðkBTxÞ : (6)

In regime (i), the spatial fluctuations are much larger than
x0, so that Vðx; yÞ ’ m�2ðx2 þ y2Þ=2 and the integrals can
be evaluated analytically. The distribution Pð�Þ ¼R1
0 rdrPðr cos�; r sin�Þ for the orientation of the dimer

� is found as

Pð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�þ �optÞ

q

2�½ð�þ �optÞcos2�þ �sin2�� (7)

with the maximum for � ¼ 0. In case (ii), the harmonic
approximation of Vðx; yÞ breaks down, and Eq. (6) is
evaluated numerically, with the results shown in
Figs. 2(d) and 2(e) which are in agreement with the nu-
merical integration of Eq. (5) shown in Fig. 2(b).
In the rigid-rotor regime (iii), motion in the radial

direction is suppressed, so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞp ¼ x0 and

we can derive a Langevin equation for � alone: mx0 €� ¼
�mð�þ �optcos

2�Þ _�þ �� where �� ¼ �x sin�þ
�y cos� so that h��ðtÞ��ðt0Þi ¼ kBTm��ðt� t0Þ is inde-

pendent of �. This equation describes thermal motion
of the orientation of the dimer with angle-dependent
damping. Since there is no conservative force, the motion

is overdamped, so that €� ’ ��ð�Þ _�, where �ð�Þ ¼ �þ
�optcos

2�, and the Fokker-Planck equation reduces to

@P=@t ¼ ð@2=@�2Þ½ð�þ �optcos
2�Þ�1P�. The normal-

ized stationary solution is

Pð�Þ ¼ �þ �optcos
2�

2��þ ��opt

(8)

and has a maximum at � ¼ 0.
This motivates the following intuitive picture: The

dominant mechanism in (i) is purely geometrical. Here,
the distribution Pðx; yÞ is a Gaussian that is squeezed in the
direction of cooling x and, therefore, the most likely
orientation is � ¼ 0. In the rigid-rotor case (iii), in
which no orientation-dependent energies are involved,
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FIG. 2 (color online). Steady-state probabilities of the orienta-
tion � as a function of the dimer frequency from numerical
integration of the second order Langevin equations (5) for
cooling rate ratios �opt=� ¼ 10 (a), �opt=� ¼ 100 (b), and

�opt=� ¼ 1000 (c). The comparison of the analytic expressions

(6) for small frequencies [(d) dashed lines] and numerical results
[(d) full lines] show good agreement over a wide range of
frequencies. (e) Analytic results from Eq. (6) for a range of
frequencies with �opt=� ¼ 100 predicts the transition from

� ¼ 0 orientation to � ¼ �=2. For larger frequencies the model
breaks down as it predicts � ¼ �=2 for large � (e). In the rigid-
rotor regime, the analytic approximation Eq. (8) is in agreement
with the numerical simulation as shown for various cooling rates
rc ¼ �opt=� (f).
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the anisotropy of the steady-state orientation is due to a
purely dynamical effect. In this case, the dimer is dynami-
cally attracted to orientations for which the fluctuations in
the angular direction are suppressed. The opposite orien-
tation is reached in the intermediate regime (ii), when a
third, purely energetical effect, is dominant. The motion is
mostly confined to configurations of constant x, for which
the potential energy changes from a double harmonic well
at x ¼ 0 to a single anharmonic well (V / x4) at x ¼ �x0.
With the average kinetic energy hTi constant and using
the virial theorem hVi ¼ 2=nhTi, with n the power of
the external potential, we find that the probability
exp½�	xhVi� is largest for � ¼ �=2.

Let us consider the experimental feasibility in a configu-
ration as shown in Fig. 1. The confinement of the dumb-
bells to the xy plane can be provided by an external
standing wave optical trap crossing the Fabry-Perot cavity
in the z direction. The three relevant time scales can be
controlled over a large range of parameters: Dimer fre-
quencies up to � ’ 2�� 1 kHz can be reached, e.g., with
spring constant k ’ 0:2 pN=
m of DNA and silica
nanospheres with a radius of r ¼ 50 nm (mass m ¼ 1:2�
10�18 kg). We note that spring constants of orders of
magnitude smaller are possible above the persistence
length of 50 nm [33]. The optical damping is provided
by a cavity with length L ’ 10�2 m and mode waist of
w ’ 10�4 m. We find the optomechanical coupling g ’
2�� 104 Hz via the mode volume C ¼ ð�=4ÞLw2. We
further assume a cavity finesse of F ’ 105, so that � ’
2� 105 Hz at a wavelength of � ¼ 1064 nm. When we

further choose �� * 5�, a power for the cooling laser of
Pdrive ¼ 3� 10�5 W results in a cooling rate of �opt &

2�� 4 Hz. For the thermal environment we assume room
temperature T ¼ 293 K and � ¼ 0:05 Hz, which corre-
sponds for the chosen nanospheres to an air pressure of
approximately 10�5 mbar. Note that even lower pressures
and environmental damping have recently been achieved
experimentally for slightly larger silica nanospheres by
optical feedback cooling [34].

Many-body phases.—Liquid crystal phases of dimers
have been previously studied in equilibrium and nonequi-
librium [28]. Nonisotropic friction and the resulting order-
ing may offer novel tools to guide the self-assembly
towards preferred structures and to study novel nematic
phases. We numerically study the system described by the
Eq. (5) with the experimental parameters as given above.
Figure 3(a) depicts an ensemble of dimers without optical
friction. For this choice of parameters, the system is in the
liquid phase and the dimer orientations are distributed
uniformly. Additional nonisotropic cooling with �opt=� ¼
100 induces a nonequilibrium transition to a phase char-
acterized by the single- and many-dimer order parameters
respectively shown in Figs. 3(b) and 3(c). The single
dimers are still aligned. In addition, the interplay between
orientation and many-body dynamics leads to a remarkable

phase with liquid order in the y direction and solid order in
the x direction. With the frequency �0 ¼ 500� and keeping
all other parameters fixed, a different pattern with all
individual dimers reorientated orthogonal to the direction
of cooling [Fig. 3(c)] is found. Again the many-body
dynamics leads to ordering along the x direction, as mea-
sured by the directional pair-correlation function gx;yðxÞ ¼
h�ððxi � xjÞ � xÞi depicted in Fig. 3(c). The patterns in

Figs. 3(b) and 3(c) are nonequilibrium analogs of liquid
crystal phases in equilibrium. For large �0 above the
melting temperature [6], two-dimensional dipolar particles
self-assemble into a triangular lattice. The guided orienta-
tion of individual dimers induced by nonisotropic friction
is competing with the orientation in the triangular lattice in
which the dimer orientations are random integer multiples
of �=3. This frequency-dependent ordering can be used to
create patterns of dimers with different orientations.
Figure 3(d) depicts a mixture of dimers with �1 ¼ 500�
and with �2 ¼ �. In the absence of direct interactions these
species order with almost orthogonal relative alignment.
Increasing the interactions �0 > �melt above the critical
melting temperature, the system forms a crystal with tri-
angular ordering and separate orientational order of the
two individual dimer species.
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FIG. 3 (color online). (a) Ensemble of dimers with frequency
� ¼ 200� [intermediate regime (ii)] in thermal equilibrium are
uniformly orientated (inset a). (b) The nonisotropic optical
friction induces orientational ordering of individual dimers [inset
(b)] and in addition, many-body nematic ordering along the
direction of cooling. (c) The nonequilibrium phase analog to a
liquid crystal phase characterized by the pair-correlation func-
tion gðxÞ. The rigid rotors align orthogonal to cooling with
additional nematic order in the direction of cooling (black
line) and liquid order in the y direction (red line). (d) Mixture
of dimers self-assembles into a crystal with dimer-orientations
according to the frequencies �.
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In summary, we have presented a realistic optomechan-
ical setup that allows for novel dissipative control over the
orientation of dimers composed of nanospheres. We have
shown that this approach can be used to prepare nonequi-
librium analogs of liquid crystals and to study transitions in
mixtures of multiple species of dimers. The only relevant
parameters that determine the nonequilibrium ordering are
the time scales of the vibrational mode of the dimers and
the rates of thermalization and nonisotropic friction.
Complex structures of DNA-connected nanospheres are
of growing interest, and we hope that the approach dis-
cussed here will provide useful means to optical control of
such systems, complementary to direct optical manipula-
tion via optical tweezers. The presented mechanism does
not rely on any specific properties of nanospheres and
applies, at least in principle, in general to complex struc-
tures of dielectric objects, such as viruses and bacteria [35].
We speculate that, in the longer run, it may also be applied
to complex molecules, and may even prove fruitful as a
microseeding technique for the nucleation of complex
molecules.
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