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Alkaline-earth-metal atoms can exhibit long-range dipolar interactions, which are generated via the

coherent exchange of photons on the 3P0 � 3D1 transition of the triplet manifold. In the case of bosonic

strontium, which we discuss here, this transition has a wavelength of 2:6 �m and a dipole moment of

4.03 D, and there exists a magic wavelength permitting the creation of optical lattices that are identical for

the states 3P0 and
3D1. This interaction enables the realization and study of mixtures of hard-core lattice

bosons featuring long-range hopping, with tunable disorder and anisotropy. We derive the many-body

master equation, investigate the dynamics of excitation transport, and analyze spectroscopic signatures

stemming from coherent long-range interactions and collective dissipation. Our results show that lattice

gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and

constitute a simple and versatile platform for the exploration of many-body systems with long-range

interactions. As such, they represent an alternative to current related efforts employing Rydberg gases,

atoms with large magnetic moment, or polar molecules.

DOI: 10.1103/PhysRevLett.110.143602 PACS numbers: 42.50.Ct, 05.30.Jp, 32.80.�t, 37.10.Jk

Introduction.—The creation and exploration of quantum
systems with long-range interactions is the focus of intense
research activity worldwide. Within the context of novel
technological applications, such as quantum information
processing, strong long-range interactions are essential as
they permit the implementation of entangling gate
operations among distant qubits. From the perspective of
fundamental physics of condensed matter systems, these
interactions permit the study of strongly correlated phases
of quantum matter. In order to access this potential there is
a need for a simple experimental platform that fosters long-
range interactions. In the domain of ultracold gases there
are currently three approaches, which rely on atoms with
large magnetic dipole moment (e.g., chromium, dyspro-
sium, and erbium [1–3]), polar molecules [4], or atoms
excited to Rydberg states. In particular, Rydberg atoms
have celebrated recent successes in the realms of funda-
mental physics and technological applications [5–8]. Two
experiments have successfully implemented quantum gate
protocols among qubits encoded in distant atoms [9,10]
and, very recently, the intricate dynamics of strongly
correlated Rydberg lattice gases was studied in experiment
[11–13].

In this work we describe a novel platform for the real-
ization of many-body systems featuring long-range dipolar
interactions. It is based on the exchange of virtual photons
between low-lying triplet states of alkaline-earth-metal
atoms, building on the seminal work by Brennen et al.
[14]. The interaction strength can be comparable to the
one typically achievable with polar molecules, i.e., 3 orders
of magnitude stronger than among atoms with large

magnetic dipole moments. Compared to Rydberg atoms
the interactions are substantially weaker. However, the use
of low-lying states makes our system less prone to perturb-
ing electric fields and reduces the number of radiative decay
channels and involved levels. This might offer an interest-
ing perspective for the study of open quantum spin systems.
We specifically focus on bosonic strontium (Sr) atoms

trapped in a deep optical lattice in a Mott insulator state and
photons exchanged on the 3P0-

3D1 transition [see Fig. 1(a)].

We derive the corresponding many-body master equation,
focusing specifically on the situation of planar and linear xy
models with long-range interactions, which are equivalent
to hard-core lattice bosons with long-range hopping. We
provide data of amagicwavelength for an optical lattice that

FIG. 1 (color online). (a) Relevant levels of the Sr atom.
(b) Atoms are trapped in an optical lattice and the interaction
between them is generated by the exchange of (virtual) photons
on the transition between 3P0 and the three degenerate 3D1

states. The decay rate and wavelength are � ¼ 290� 103 s�1

and � ¼ 2:6 �m, respectively. � is much larger than the typical
interatomic spacing (a ¼ 206:4 nm) at the magic wavelength.
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grant equal confinement for both the states 3P0 and 3D1,

characterize the role of decoherence and disorder, and show
how the interactions and the resulting collective light scat-
tering become manifest in the fluorescence spectrum.
Building on the routine creation of alkaline-earth-metal
Mott insulators in a number of laboratories [15,16], our
approach represents a simple route for the exploration and
exploitation of many-body phenomena in long-range inter-
acting systems and highlights a novel way for the creation of
long-lived collective atomic states, with applications in
quantum optics and quantum information.

Triplet states of strontium.—Sr has two valence electrons
and its spectrum is thus formed by a series of singlet and
triplet states [Fig. 1(a)]. The radiative transitions between
the two series are dipole forbidden, which—due to the
resulting small transition linewidths—leads to a wide range
of applications, such as ultraprecise atomic clocks [17] or
the implementation of quantum information processing
protocols [5,18]. Here, we consider Sr atoms in a Mott
insulator state [15,16] as depicted in Fig. 1(b). The lattice
is identical for the 3P0 and

3D1 states, and its blue detuned

magic wavelength is located at �bm ¼ 412:8 nm (for more
detailed information, see Supplemental Material [19]). The
resulting lattice spacing is a ¼ 206:4 nm, a value that we
will use throughout this work to benchmark our results.

Initially, all Sr atoms within the lattice are excited to the
triplet manifold, i.e., to either the metastable state 3P0 (its

lifetime can be considered infinite for all experimental
purposes) or the state 3D1. Long-range interactions between

two Sr atoms then emerge by the resonant exchange of
photons that are emitted on the transition 3D1-

3P0 which

has the wavelength � ¼ 2:6 �m [see Fig. 1(b)]. This
mechanism, which leads to a dipolar interaction, is, in
general, well understood [20–22], but usually it plays a
role only in very dense samples, i.e., where the interatomic
distance is far smaller than the wavelength of the transition
[14,23,24]. Conventional lattice setups usually do not reach
such parameters. However, the combination of a latticewith
small spacing and a long wavelength transition that is
available in Sr allows us to enter this regimewithout having
to deal with the destructive effect of atomic collisions. The
transition dipole moment between the 3P0 state and the

three degenerate 3D1 states is p ¼ 4:03 D and effectuates

a strong resonant dipole-dipole interaction that extends over
several lattice sites as depicted in Fig. 1(b). In order to avoid
unnecessary complications, we restrict ourselves to photon
exchange on the 3D1-

3P0 transition, which has the highest

decay rate (� ¼ 290� 103 s�1 [25]), and leave the
(straightforward) consideration of the additional weaker
coupling channels 3D1-

3P1 and 3D1-
3P2 to future

investigations.
Many-body master equation.—The starting point for

the derivation of the many-body master equation is the
Hamiltonian describing N Sr atoms coupled to the radia-
tion field. To formulate it we introduce the vector transition

operator for the kth atom (located at rk) bk ¼ bkxx̂þ
bkyŷþ bkzẑ, such that the transition dipole matrix elements

are real and aligned along the three Cartesian spatial axes
x̂, ŷ, and ẑ [26]. Here, bkj ¼ jPikhjj, with j ¼ x, y, z, where

jPik represents the kth atom in the 3P0 state and jjik the

Cartesian states of 3D1, related to the angular momentum

ones jmik (with m ¼ �1, 0, þ1) as j � 1i ¼ ð�jxi �
ijyiÞ= ffiffiffi

2
p

and j0i ¼ jzi. Within this notation the
Hamiltonian of the atomic ensemble and the radiation field

is given by Haf ¼ PN
k¼1 @!ab

y
k �bk þP

q�@!qa
y
q�aq� þ

i@
P

N
k¼1

P
q� gq� � ðayq�ske�iq�rk � skaq�e

iq�rkÞ, with sk ¼
by
k þ bk, where @!a ¼ 2�@c=� is the energy difference

between the 3P0 state and the degenerate
3D1manifold, @!q

is the energy of a photonwithmomentumq and polarization
�, and aq� is the annihilation operator of such a photon

(bosonic operators, i.e., ½aq�; ayq0�0 � ¼ �qq0���0). The coef-

ficient gq� is given by gq� ¼ p
ffiffiffiffiffiffiffiffiffiffi
!q

2�0@V

q
êq�, with V the quan-

tization volume and êq� the unit polarization vector of the

photon (q�êq� ¼ 0).

Following Refs. [22,26] we obtain the master equation
governing the evolution of the density matrix � of the
atomic ensemble: _� ¼ � i

@
½H;�� þDð�Þ. The first term

depends on the many-body Hamiltonian

H ¼ @!a

X

k

by
k �bk þ @

X

k�l

by
k � Vkl � bl: (1)

Its first part contains the bare energies of the atomic
levels and the second part describes the long-ranged and
(in general) anisotropic dipole-dipole interaction, charac-
terized by the coefficient matrix

Vkl ¼ 3�

4

��
y0ð�klÞ � y1ð�klÞ

�kl

�
1þ y2ð�klÞr̂klr̂kl

�
:

Here ynðxÞ represents the nth order spherical Bessel func-
tion of the second kind and �kl � karkl with ka ¼ !a=c
and rkl ¼ rk � rl ¼ rklr̂kl. The second term of the master
equation depends on the dissipator

Dð�Þ ¼ X

kl

bk � �kl � �by
l � 1

2
fby

k � �kl � bl; �g:

The coefficient matrix,

�kl ¼ 3�

2

��
j0ð�klÞ � j1ð�klÞ

�kl

�
1þ j2ð�klÞr̂klr̂kl

�
;

encodes the dissipative couplings among the atoms and
jnðxÞ represents the nth order spherical Bessel function of
the first kind.
The coherent and dissipative dynamics are intimately

connected since they both originate from the emission
or absorption of photons. However, by virtue of the long
wavelength of the photons and the achievable small
interparticle separation [see Fig. 1(b)] one can reach a
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parameter regime in which the coherent interaction is
much stronger than the dissipation. This is shown in
Fig. 2(a) where we compare the coherent interaction V12

to the dissipative rate �12 for two atoms separated by a
distance d whose induced dipoles are aligned as "" . For
d ¼ a the ratio V12=�12 is approximately 5.7, but for the
dipole alignment !! this ratio reaches 13.9, showing
that the Sr lattice setup is indeed well suited for the study
of coherent many-body phenomena. In fact, we will later
see that, due to the presence of subradiant states, even
larger ratios can be achieved.

Coherent dynamics.—Hamiltonian (1) conserves the

number of atoms in the 3D1 state, ND ¼ P
kb

y
k �bk.

Hence, nontrivial dynamics is only induced by the second
term of Eq. (1), which depends strongly on the geometry of
the lattice. To get a glimpse of the versatility of the Sr setup
for the study of coherent many-body phenomena, let
us consider a situation in which we have a one- or
two-dimensional lattice located in the x-y plane and
where atoms are solely excited to the 3D1ðm ¼ 0Þ state.
In this case the Hamiltonian (1) simplifies to Hxy ¼P

k�lWklb
y
kzblz with the interaction coefficients Wkl ¼

3@�
4 ½y0ð�klÞ � y1ð�klÞ

�kl
� � 3@�

4k3a

1
jrk�rlj3 (the dipolar approxima-

tion holds when �kl & 1).Hxy represents an xymodel with

long-range interaction or equivalently a system of hard-
core bosons with long-range hopping, which is due to the

fact that the operators bykz and bkz can be identified with

creation or annihilation operators of hard-core bosons.
Note that such long-range hopping can also be effectively
established in ion traps [27,28]. For nearest neighbor

interactions the xy model has been studied extensively in
the literature in the context of quantum information pro-
cessing [29], quantum and thermal phase transitions [30],
and relaxation of closed quantum systems [31]. The case of
spin systems with long-range interactions is less explored
[32], and recent Monte Carlo simulations [33] raise new
questions concerning their phase behavior.
To study the (thermo)dynamics of Hxy one needs to

control the density of hard-core bosons ND=N, which is
done as follows: Starting with all atoms in the state 3P0

one irradiates a laser on the 3P0-
3D1 transition. The

Hamiltonian describing the atom-laser coupling is HL ¼
@�L �PN

k¼1ðe�iðk�rk�!tÞbk þ eiðk�rk�!tÞby
k Þ, with �L ¼

pE0=@, where ! is the frequency, k the momentum, and
E0 the amplitude vector of the laser. Applying a strong
laser pulse (j�Lj 	 jWklj) with amplitude vector E0 ¼
E0ẑ for a time � on resonance (! ¼ !a) creates on
average NDð�Þ ¼ Nsin2ð2j�Lj�Þ hard-core bosons. This

number fluctuates with standard deviation �ND ¼ffiffiffiffi
N

p j sinð4j�Lj�Þj=2. Alternatively, one could think of
selectively changing the state of atoms in specific sites.
In particular, in the one-dimensional case, the required
single-site addressing can be achieved by applying a mag-
netic field gradient, which is switched off after the desired
state is prepared [34,35].
The xy model focused on here merely represents a very

simple scenario. In all its generality the Hamiltonian (1)
describes three species of hard-core bosons which, depend-
ing on the lattice dimension and geometry, exhibit aniso-
tropic and species-dependent long-range hopping and
species interconversion. The density of the individual
species is furthermore controllable by simple laser pulses.
This generates a rich playground for the discovery and
study of many-body quantum phases.
Dissipation and disorder.—We now discuss two seem-

ingly harmful effects: collective dissipation due to radia-
tive decay and disorder stemming from the uncertainty in
the atomic positions. To analyze them we numerically
simulate a situation in which a single excitation (or hard-
core boson) propagates through a linear chain of N ¼ 20
Sr atoms orientated along the x direction under the action
of Hxy and the corresponding dissipator. Initially, the ex-

citation is localized at the leftmost atom which is in the
3D1ðm ¼ 0Þ state. Its propagation is depicted in Fig. 2(b),

which also shows an expected overall decrease of the
excitation density due to dissipation. Moreover, we have
extracted from the simulations the (effective) decay rate
�eff of the excitation as a function of the lattice spacing d
[see Fig. 2(a)]. Surprisingly, one can see that for d ¼ a the
effective decay rate of the excitation is not only much
smaller than the single-atom one �, but more than 2 orders
of magnitude smaller than the dipole-dipole interaction.
The reason for this unexpected long lifetime of the excita-
tion resides in the collective character of the dissipation
and the emergence of subradiant states.

FIG. 2 (color online). Transport of a single excitation on a
chain of N ¼ 20 atoms with induced dipoles pointing in the z
direction. (a) Comparison between the nearest neighbor interac-
tion V12, the damping rate �12, and the effective decay rate �eff

of the single excitation for different values of the nearest
neighbor separation d. For d ¼ a the effective decay rate is
approximately 2 orders of magnitude smaller than the coherent
interaction. (b)–(d) Time evolution of a single, initially localized
excitation, for varying disorder and for d ¼ a, with (b) 	=a ¼ 0,
(c) 	=a ¼ 0:025, and (d) 	=a ¼ 0:05.
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Let us now discuss disorder, which arises from the fact
that the external wave function of each localized Sr atom
has a finite width. We model this wave function as a
three-dimensional isotropic Gaussian with width 	, local-
ized on the respective lattice site. Using the dipolar ap-
proximation for the interaction and assuming rkl 	 	, the
couplingsWkl become random variables which are distrib-

uted according to pðWklÞ ¼ ½ðA2=3Þ=ð3 ffiffiffiffiffiffiffi
2�

p
	rklW

5=3
kl ��

exp½�ðrkl � ½A=Wkl�1=3Þ2=ð2	2Þ�, where A ¼ 3@�=ð4k3aÞ.
Again, the simulated excitation transport reveals the effect
of disorder in Figs. 2(b)–2(d) for d ¼ a With increasing
ratio 	=a transport becomes less efficient and more popu-
lation remains localized at the left of the lattice. Beyond
this simple illustration it will be very interesting to study
the effect of this controllable disorder in the many-body
context. It has been shown that the ground state of hard-
core bosons exhibits a localization transition for certain
types of disorder [36] in the hopping rates. It is an open
question whether this transition is also present here.

Spectroscopy on the few-body system.—Finally, let us
discuss the spectroscopic properties of the Sr lattice system
and find out whether they provide a clear experimental
signature of the presence of long-range interactions.
To this end we calculate the power spectrum of the
radiation field EðR; tÞ scattered off the ensemble of
atoms in the direction of observation R driven by a weak
incident laser field of frequency !: SðR; !Þ ¼ 1

2� �R1
�1 d�ei!�hEyðR; tÞ � EðR; tþ �Þi. We consider again

the above-discussed case of a one-dimensional lattice
with N sites oriented along the x axis where nearest
neighbors are separated by the distance d. The dynamics
of this driven ensemble is described by HamiltonianHxy, the

corresponding dissipator, and the Hamiltonian HL, which
takes into account the action of the laser field with polariza-
tionE0 ¼ E0ẑ. For the sake of simplicity we orient the laser
beam such that its momentumk is perpendicular to the chain
[see sketch in Fig. 3(a)] and observe the spectrum of the
radiation scattered into the y-z plane [denoted by Sð!Þ].

Before discussing the results for a chain, let us
first consider the case of two atoms, i.e., N ¼ 2, where
the problem can be treated analytically. Here, the
spectrum of the radiation Sð!Þ consists of a single peak
of Lorentzian form Sð!Þ / 1=½ð!�!a �W12=@Þ2 þ
ð�þ �12Þ2=4� with �12 ¼ 3�

2 ½j0ðkdÞ � j1ðkdÞ
kd �. Hence, the

signature of the strong interaction is a shift towards
the blue (repulsive interaction) and broadening of the
Lorentzian peak [37,38]. Note that only one peak (the sym-
metric superposition of the two singly excited states) appears
in this case. This is due to two facts: (i) In this particular
geometry (themomentum of the laser being perpendicular to
the interparticle separation) the laser only couples to the
(superradiant) symmetric state and (ii) the symmetric and
antisymmetric states are eigenstates of the dissipator as well
as of the Hamiltonian and, hence, the dissipation induces no
couplings between the symmetric and antisymmetric states.

For a chain of N ¼ 20 atoms, we have calculated the
spectrum numerically and the result is shown in Fig. 3(b).
One observes that, as in the case of two atoms, the laser field
couples to the symmetric (spin wave) state, which decays
superradiantly (visible as the very broad feature on the blue
side of the atomic line). More interesting, however, is the
emergence of a number of narrow peaks belonging to
long-lived subradiant states [39]. These lines appear due
to the fact that the coherent and dissipative interaction
do not share the same set of eigenstates. This admixes a
fraction of the symmetric state to other collective states,
making them excitable by the laser [40]. The density profile
of two selected states is shown in the inset of Fig. 3(b).
The Sr system thus offers the possibility of exciting
long-lived collective states [42,43] which can find an appli-
cation in quantum information and photon storage.
Conclusions and outlook.—In conclusion, we have

shown that alkaline-earth-metal atoms in optical lattices
provide a platform offering controllable many-body sys-
tems with long-range interactions. Specifically, we have
analyzed a regime which implements hard-core bosons
with coherent long-range hopping. Beyond that simple ex-
ample, the system permits the study of mixtures of hard-
core bosons in the presence of tunable disorder. Signatures
of the long-range interaction are manifest in the spectrum of
the radiation which is collectively scattered from the atomic
ensemble. In the future we will investigate more closely the
properties of the emitted light [44] and its use to detect
quantum phases [45] and (disorder-driven) phase transi-
tions. We will furthermore investigate dynamical phases
[46] resulting from the interplay between dissipative and
coherent dynamics and explore how the versatility of the
Sr platform can be further enhanced, e.g., by the application
of static electric and microwave fields.

FIG. 3 (color online). (a) One-dimensional lattice (oriented
along the x axis) with lattice constant d. A laser is shone on
the atoms with momentum k and polarization E0 both perpen-
dicular to the chain. (b) Power spectrum of the radiation scat-
tered into the y-z plane Sð!Þ (arbitrary units and logarithmic
scale) as a function of the interparticle separation d and the
frequency of the laser !. The two insets show the corresponding
spectrum for d ¼ a and d ¼ 2a (linear scale). The average
excitation number on the jth lattice site ND;j corresponding to

the states represented by two of the peaks is also sketched.
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[6] H. Weimer and H. P. Büchler, Phys. Rev. Lett. 105, 230403
(2010).

[7] J. Schachenmayer, I. Lesanovsky, A. Micheli, and A.
Daley, New J. Phys. 12, 103044 (2010).

[8] I. Lesanovsky, Phys. Rev. Lett. 106, 025301 (2011).
[9] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D.

Yavuz, T. G. Walker, and M. Saffman, Nat. Phys. 5, 110
(2009).
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