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We provide a first derivation of the Bekenstein-Hawking entropy of 3D flat cosmological horizons in

terms of the counting of states in a dual field theory. These horizons appear in the flat limit of nonextremal

rotating Banados-Teitleboim-Zanelli black holes and are remnants of the inner horizons. They also satisfy

the first law of thermodynamics. We study flat holography as a limit of AdS3=CFT2 to semiclassically

compute the density of states in the dual theory, which is given by a contraction of a 2D conformal field

theory, exactly reproducing the bulk entropy in the limit of large charges. We comment on how the dual

theory reproduces the bulk first law and how cosmological bulk excitations are matched with boundary

quantum numbers.

DOI: 10.1103/PhysRevLett.110.141302 PACS numbers: 04.70.Dy, 04.20.Ha, 04.60.Rt, 11.25.Tq

Introduction.—Quantum gravity is the holy grail of mod-
ern theoretical physics. Perhaps the most enigmatic and
most successful route to a theory of quantum gravity is
the holographic principle [1,2], which states that a theory
of quantum gravity in some spacetime is exactly equivalent
to a theory without gravity living on the boundary of that
spacetime. Our current understanding of the holographic
principle is mainly restricted to anti-de Sitter (AdS) space-
times through the AdS/conformal field theory (CFT) corre-
spondence [3]. One of the enduring successes of AdS/CFT
has been the explanation of the entropy of AdS black holes
by a counting of microstates in the dual field theory [4].

Real astrophysical black holes, however, are asymptoti-
cally flat. The understanding of their features using holog-
raphy, and indeed a better understanding of the holographic
principle itself, calls for a formulation holography in flat
spacetimes. In this Letter, we take significant strides in this
direction and provide such an understanding of the entropy
of horizons in 3D Minkowski spacetime in terms of the
counting of states in a conjectured dual field theory. Our
analysis can be looked at as the flat space analogue of the
derivation of the AdS3 Banados-Teitleboim-Zanelli (BTZ)
black holes [5,6] entropy in terms of the symmetries of the
dual CFT2 [7]. The horizon that we study in this Letter is a
cosmological horizon which arises in a certain quotient of
Minkowski spacetime. This can also be understood as a
remnant of the inner horizon of a nonextremal BTZ black
hole in the flat space limit. The peculiarity of our setup
actually also allows us to ask interesting questions about
cosmology and provides for the first time an understanding
of cosmological horizons in terms of a dual description.

Flat spacetimes can be obtained as large radius limits of
AdS. Formulating flat space holography as a limit of AdS/
CFT has been used to extract features of the flat space S
matrix from AdS/CFT correlators; see, e.g., Refs. [8–11].
Our 3D analysis follows this philosophy and is primarily

based on the symmetries of the theory. This was recently
pursued in Refs. [12–15] where these flat limits are real-
ized as a contraction on the symmetry structure of AdS/
CFT. On the bulk side [12,15,16], the AdS symmetries are
contracted to what is called the Bondi-Metzner-Sachs
(BMS) algebra [17–20]. On the field theory side, the
CFT symmetries are contracted to the so-called Galilean
conformal algebras (GCA), previously considered in the
context of the nonrelativistic limits of CFTs [21]. This
connection was christened the BMS=GCA correspondence
[13], which holds even beyond our 3D context.
Here, we focus onBMS3=GCA2 and explore the extent to

which the dual 2DGalilean conformal field theory (GCFT),
invariant under GCA, can reproduce nontrivial features
about asymptotic R1;2 spacetimes. We show the family of
shifted-boost orbifolds of R1;2 [22] correspond to the flat
limit of the nonextremal BTZ black holes and carry non-
trivial BMS3 charges. Their causal structure contains a
cosmological horizon, the remnant of the BTZ inner hori-
zon, whose area, surface gravity, and rotation allow us to
define a bulk entropy, temperature, and angular velocity,
respectively. We show that these satisfy a first law of ther-
modynamics, analogous to the ones recently discussed in
the literature [23–30]. We then derive an analogue of
Cardy’s formula for 2D GCFTs by computing their density
of states semiclassically. Our main result is that our dual
field theory calculation reproduces the bulk entropy. This
constitutes the first ‘‘microscopic’’derivation of the entropy
of a cosmological horizon, in the spirit of Ref. [7].
Asymptotic symmetries in 3D Minkowski spacetime.—

The physical states in the Hilbert space of a quantum
theory of gravity form representations of the symmetry
structure of the theory at its asymptotic boundary, the
asymptotic symmetry algebra (ASA). In AdS3, the seminal
work of Ref. [31] showed that the ASA is formed by two

commuting copies of the Virasoro algebra (Ln,
�Ln)
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½Lm;Ln� ¼ ðm� nÞLmþn þ c

12
mðm2 � 1Þ�mþn;0; (1)

with analogous brackets for �Ln and central charge �c ¼
c ¼ 3‘

2G , where ‘ is the radius of AdS3 and G the Newton

constant. These Virasoro algebras are also physically real-
ized as the local symmetry algebras of 2D CFTs. Through
AdS/CFT, the two are identified, providing a match
between the gravity and the dual CFT symmetries.

In 3D Minkowski spacetimes, the ASA is given by the
BMS3 algebra [16]

½Lm; Ln� ¼ ðm� nÞLmþn þ cLLmðm2 � 1Þ�mþn;0;

½Lm;Mn� ¼ ðm� nÞMmþn þ cLMmðm2 � 1Þ�mþn;0;
(2)

with ½Mn;Mm� ¼ 0, cLL ¼ 0, and cLM ¼ 1=4. These sym-
metries are defined at null infinity, with Lm being the
diffeomorphisms of its spatial circle and Mn the angular
dependent supertranslations and translations. This algebra
is isomorphic to the 2D GCA, the symmetry algebra of
GCFTs, which are best viewed as a limit of standard 2D
CFTs. This forms the basis of the BMS=GCA correspon-
dence in three bulk dimensions. The precise map can be
described in terms of an Inönü-Wigner contraction of the
two copies of the Virasoro algebra [16]

Ln ¼Ln� �L�n; Mn ¼ �ðLnþ �L�nÞ; �¼G=‘! 0;

(3)

where we take ‘ ! 1, keeping G fixed. This limit imple-
mented on the algebra (1) yields (2), with central charges
cLL ¼ 1

12 ðc� �cÞ ¼ 0 and cLM ¼ G
12‘ ðcþ �cÞ ¼ 1=4.

A natural spacetime interpretation in terms of the con-
traction of the Killing vectors of global AdS to the Killing
vectors of flat space and the natural extension to the infinite
set of asymptotic Killing vectors was recently worked out
in Ref. [14], where it was also shown that the ‘ ! 1 limit
induces a spacetime contraction ðt; xÞ ! ð�t; xÞ on the CFT
living on the boundary cylinder. This limit is best inter-
preted as an ultrarelativistic limit [32].

Spacetime analysis.—In the absence of sources, the most
general solution to 3D pure gravity with a vanishing
cosmological constant is locally flat [34] and it can be
written as [12]

ds2 ¼ �ðc Þdu2 � 2drdu

þ 2

�
�ðc Þ þ u

2
�0

�
dc duþ r2dc 2: (4)

The asymptotic structure at null infinity is preserved by a
set of diffeomorphisms, depending on two arbitrary func-
tions of c whose modes [16,35]

‘n ¼ ieinc
�
inu@u � inr@r þ

�
1þ n2

u

r

�
@c

�
; (5a)

mn ¼ ieinc@u; n 2 Z; (5b)

satisfy the centerless BMS3 algebra. Note that ‘�1;0 and

m�1;0 coincide asymptotically with the exact Killing

vectors of Minkowski space forming the global isoð2; 1Þ
subalgebra of BMS3. The coefficients of the Fourier mode
decomposition of the corresponding asymptotically
conserved charges Ln and Mn determine the arbitrary
functions �ðc Þ, �ðc Þ:

�¼�1þ8G
X
n

Mne
�inc ; �¼4G

X
n

Lne
�inc : (6)

In this Letter, we study the most general zero mode solu-
tion labeled by � ¼ 8GM and � ¼ 4GJ with M, J � 0.
We show that these correspond to the shifted-boost orbi-
fold (J � 0) [22] and the boost orbifold (J ¼ 0) [36] of
R1;2. This claim can be derived by taking the flat limit, as in
Ref. [22], of the nonextremal BTZ black holes (M‘ � J),

ds2BTZ ¼
�
8GM� r2

‘2

�
dt2 þ dr2

�8GMþ r2

‘2
þ 16G2J2

r2

� 8GJdtd�þ r2d�2; ���þ 2�; (7)

whose outer and inner horizons r� are given by

M ¼ r2þ þ r2�
8G‘2

; J ¼ rþr�
4G‘

: (8)

We refer to their flat ‘ ! 1 limit as the ‘‘flat BTZ’’
(FBTZ)

ds2FBTZ ¼ r̂2þdt2 �
r2dr2

r̂2þðr2 � r20Þ
þ r2d�2 � 2r̂þr0dtd�;

(9)

where rþ ! ‘
ffiffiffiffiffiffiffiffiffiffiffi
8GM

p ¼ ‘r̂þ and r�!
ffiffiffiffiffi
2G
M

q
jJj¼ r0. These

correspond to (4) under the coordinate transformation

dc ¼ d�þ r0dr

r̂þðr2 � r20Þ
; du ¼ dtþ r2dr

r̂2þðr2 � r20Þ
:

The null hypersurface r ¼ r0 is a Killing horizon with
normal � ¼ @u þ ðr̂þ=r0Þ@�, surface gravity � ¼ r̂2þ=r0,
and angular velocity� ¼ r̂þ=r0. Thus, we can associate a
Hawking temperature and entropy to it:

TFBTZ ¼ �

2�
¼ r̂2þ

2�r0
; SFBTZ ¼ �jr0j

2G
:

In fact, these quantities satisfy the first law of thermody-
namics

�TFBTZdSFBTZ ¼ dM��dJ; (10)

which is the remnant of the corresponding law satisfied by
the BTZ inner horizon at finite ‘

�T�
HdS

� ¼ dM���dJ; (11)

where T�
H ¼ r2þ�r2�

2�r�‘2
, �� ¼ rþ

‘r�
, and S� ¼ �jr�j

2G3
are its

temperature, angular velocity, and entropy, respectively.
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That (9) is a quotient manifests through the map to
Cartesian coordinates (valid for r > r0; a similar change
of coordinates exists for r < r0):

X2 ¼ r2 � r20
r̂2þ

sinh2ðr̂þ�Þ; T2 ¼ r2 � r20
r̂2þ

cosh2ðr̂þ�Þ;

Y ¼ r0�� r̂þt; (12)

so that � ¼ @� ¼ r0@Y þ r̂þðX@T þ T@XÞ acts like X� �
e�2�r̂þX�, Y � Y þ 2�r0. Equivalently, the action of �
identifies points of R1;2 under a combined boost in the
(T, X) R1;1 plane of rapidity r̂þ and a translation of length
r0 in the transverse Y direction. Thus, (9) is the shifted-
boost orbifold of R1;2 [22].

This orbifold interpretation provides a global descrip-
tion for the spacetime (9) [37]. Whenever XþX� > 0,

X� ¼ �ffiffiffi
2

p e�EðzþyÞ; Y ¼ z; E ¼ r̂þ
r0

; (13)

the geometry describes a contracting universe (� < 0)
toward a cosmological horizon located at � ¼ 0, i.e.,
r ¼ r0, and an expanding one (� > 0) from it

ds2 ¼ �d�2 þ ðE�Þ2
H2

dy2 þH2ðdzþ AÞ2; (14)

with H2 ¼ 1þ ðE�Þ2 and A ¼ ð1�H�2Þdy. In the region
�1=E2 < 2XþX� < 0,

X� ¼ � xffiffiffi
2

p e�EðzþyÞ; Y ¼ z; (15)

the geometry is static;

ds2 ¼ dx2 � ðExÞ2
H2

dy2 þH2ðdzþ AÞ2; (16)

with H2 ¼ 1� ðExÞ2 and A ¼ ð1�H�2Þdy, and
describes a Rindler space in the region ðExÞ2 � 1 with a
Rindler horizon at x ¼ 0, i.e., r ¼ r0. Finally, whenever
2XþX� <�1=E2, the geometry has closed timelike
curves, as nonextremal BTZ black holes do. As in that
case, we will excise this region from spacetime, introduc-
ing a singularity at its boundary 2XþX� ¼ �1=E2.

Dual field theory analysis.—Quantum gravity states in
3D flat space should transform under representations of the
infinite 2D GCA. These are labeled by eigenvalues of L0,
M0 [33,38]:

L0jhL;hMi ¼ hLjhL;hMi; M0jhL;hMi ¼ hMjhL;hMi;
where hL ¼ lim

�!0
ðh� �hÞ; hM ¼ lim

�!0
�ðhþ �hÞ: (17)

There exists the usual notion of primary states jhL; hMip
in the 2D GCA annihilated by Ln, Mn for n > 0.
Representations are built by acting with the raising opera-
tors L�n, M�n on them.They satisfy hL � 0. Using the
dictionary between h, �h and AdS3 mass and angular mo-
mentum, we can relate fhL; hMg to the BMS3 charges

h ¼ 1

2
ð‘Mþ JÞ þ c

24
;

�h ¼ 1

2
ð‘M� JÞ þ �c

24
) hL ¼ J;

hM ¼ GMþ cLM
2

¼ GMþ 1

8
:

(18)

This suggests the bound hM � 0, saturated by R1;2 [15],
given thatGM ¼ �1=8 for global AdS3. This is confirmed
by a 2D GCFT unitarity bound derived from demanding
that the norm of a state of weight (h, �h) at a level n be
non-negative in the original 2D CFT. This gives 2nhþ
c
12nðn2 � 1Þ � 0 and similarly for �h. Using the definitions

(17), one can derive the analogous statement for 2D GCFT

nhM þ cLMnðn2 � 1Þ � 0) hM � 0; cLM � 0: (19)

A more thorough analysis is required to better understand
aspects of unitarity in 2D GCFTs.
Given the success of Cardy’s formula in accounting for

the entropy of BTZ black holes [7], it is natural to wonder
whether a counting of states in 2D GCFTs can reproduce
the gravitational entropy SFBTZ. To analyze this, define the
partition function of 2D GCFT as

ZGCFTð	;
Þ ¼
X

dðhL; hMÞe2�ið	hLþ
hMÞ; (20)

where dðhL; hMÞ is its density of states with charges
fhL; hMg. To derive an analogue of Cardy’s formula for
the GCFT, it is crucial to use an analogue of modular
invariance in the original 2D CFT for the 2D GCFT
partition function. In particular, we need to derive the S
transformation rules for 2D GCFTs. We shall first state this
result and then motivate it as emerging as a limit of the
original 2D CFT. The S transformation in 2D GCFTs reads

S: ð	; 
Þ ! ð�1=	; 
=	2Þ: (21)

To understand this, let us start with the 2D CFT partition
function and rewrite it using (17) but at finite �

ZCFT ¼ X
dCFTðh; �hÞe2�ið�hþ �� �hÞ

¼ X
dðhL; hMÞe2�i½	hLþð
=�ÞhM�;

where 	, 
 ¼ 1
2 ð�� ��Þ. At finite �, the S transformation of

the 2D CFT reads

ð�; ��Þ !
�
� 1

�
;� 1

��

�
) ð	; 
Þ !

�
	


2 � 	2
;

�



2 � 	2

�
:

(22)

The Hamiltonian scaling in ZCFT must be accompanied by
a temperature rescaling 
 ! �
. 2D GCFT transforma-
tions (21) emerge from (22) after this rescaling. Following
[39,40] closely, we define the quantity

PRL 110, 141302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

141302-3



Z0
GCFTð	;
Þ ¼ e��i
cLMZGCFTð	; 
Þ; (23)

in analogy to the modular invariant 2D CFT partition

function on the plane Z0
CFT ¼ e�ð�i=12Þðc�� �c ��ÞZCFT satisfy-

ing Z0
CFTð�; ��Þ ¼ Z0

CFTð�1=�;�1= ��Þ. In the flat limit, this

translates into Z0
GCFTð	;
Þ ¼ Z0

GCFTð� 1
	 ;



	2Þ, the S trans-

formation (21), leading to

ZGCFTð	; 
Þ ¼ ei�cLM
ð1�1=	2ÞZGCFT

�
� 1

	
;



	2

�
: (24)

By doing an inverse Laplace transformation, the density
of states equals

dðhL; hMÞ ¼
Z

d	d
e2�ifð	;
ÞZGCFTð�1=	; 
=	2Þ;

where fð	; 
Þ ¼
�
cLM
2

� cLM
2	2

� hM

�

� hL	: (25)

In the limit of large charges, we evaluate (25) by a
saddle-point approximation. There is a saddle at 	 �
i

ffiffiffiffiffiffiffiffiffi
cLM

p
=

ffiffiffiffiffiffiffiffiffi
2hM

p
whenever ZGCFTð�1=	; 
=	2Þ is slowly

varying, which occurs at positive i
, i.e., negative GCFT
temperature, a point we stress below. The 2D GCFT
entropy is then

SGCFT ¼ logdðhL; hMÞ ¼ 2�hL

ffiffiffiffiffiffiffiffiffi
cLM
2hM

s
: (26)

This is the analogue of the Cardy formula for 2D
GCFT [41]. Applying (26) to the charges (18) describing
the shifted-boost orbifold (in the limit of large charges),
one finds

SGCFT ¼ �jJjffiffiffiffiffiffiffiffiffiffiffi
2GM

p ¼ SFBTZ: (27)

Thus, the 2D GCFT state counting exactly reproduces the
entropy of the cosmological horizon.

Notice that 2D GCFT thermodynamic potentials equal

@S

@hL
¼ ��

T�
H

;
1

TGCFT

� @S

@hM
¼ � 1

GT�
H

: (28)

Thus, a universal feature of 2D GCFTs is the negativity of
their thermodynamic temperature and specific heat

CM ¼ @hM
@TGCFT

��������hL

¼ ��2

G

T�
H

ð��Þ2 : (29)

Our Cardy formula (26) is compatible with the bulk first
law (11), capturing its peculiar sign through the negative
temperature, since hM � 0 in 2D GCFTs. We view this as a
very interesting feature of these theories, given the nega-
tive specific heat that higher dimensional asymptotically
flat black holes have, a feature that has always been diffi-
cult to reconcile with a dual field theory formulation.

Cosmological interpretation.—The shifted-boost orbi-
fold (9) is only invariant under the translation @Y and the

boost X@T þ T@X. Its asymptotic structure at null infinity
still satisfies the BMS3 boundary conditions, in the same
way as BTZ black holes do preserve AdS3 asymptotics.
Thus, an observer at null infinity can still assign nontrivial
2D GCA charges M0 and L0 to this geometry and use the
2D GCFT partition function to count the number of states
carrying these charges.
A cosmological observer, who sees some contraction

and expansion of the Universe, will measure some tem-
perature due to particle creation by the cosmological
horizon. The latter is measured with respect to his
cosmological clock. To discuss how this description is
related to the one in 2D GCFT, consider a bulk scalar

field excitation � with Fourier decomposition � ¼
Gpnð�Þeiðpyþnz=r0Þ. p corresponds to the boost quantum

number, whereas n 2 Z is momentum along the orbifold
direction z. It was shown in Ref. [42] that excitations
satisfying Dirichlet boundary conditions at the singularity
have an asymptotic behavior at j�j ! �1

� ! ð1=
ffiffiffiffiffiffiffiffiffiffi
!j�j

p
Þeið�!j�jþpyÞeinz=r0 ; (30)

where for large charges (or massless fields) !2 ¼
ðp� n=r0Þ2. Using (12) and (13), one can relate this
cosmological description to the BMS one as

� !
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂þ=!r
q �

ei!r=r̂þei½r̂þtðp�n=r0Þþn��: (31)

Thus, frequencies!measured by the cosmological observer
agree with those measured at infinity [r̂þðp� n=r0Þ], up to
the rescaling r̂þ, which also ensures the matching of the
Hawking temperature due to particle creation radiation with
the surface gravity temperature TFBTZ [42].
Discussions.—In the present Letter, we have advocated

that flat space holography in three bulk dimensions can be
understood as an appropriate limit ofAdS3=CFT2. We have
provided nontrivial evidence for this by showing that a
counting of states in the dual GCFT leads to a Cardy-like
formula which exactly reproduces the Bekenstein-
Hawking entropy of the bulk cosmological horizon. The
dual field theory also ‘‘knows’’ that this cosmological
horizon is a remnant of the BTZ inner horizon and has a
peculiar first law. This is reflected in the sign of the GCFT
temperature and specific heat.
We had earlier motivated our Letter by stressing how flat

space holography would facilitate the study of real astro-
physical black holes. Let us explain how our present analy-
sis would be useful for this. Real black holes live in 4D,
and hence the obvious way to understand them is to gen-
eralize our construction to higher dimensions and use the
BMS=GCA correspondence. But, there is actually another
and possibly computationally simpler way out. Entropy
counting for a special class of black holes, called extremal
black holes, is successful today by looking at the symme-
tries near the horizon, realizing that there is always an
AdS2 factor [43] and using AdS2=CFT1 techniques [44].
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The more general class of nonextremal black holes, includ-
ing the Schwarzschild and the Kerr black holes, cannot be
tackled by this method. Nonextremal black holes, however,
contain a universal 2D Rindler spacetime in the ‘‘near-
horizon’’ limit. In the present Letter, we have found a dual
explanation of a horizon which can be looked upon as a 2D
Rindler horizon in a certain patch. It is very likely that, by
using techniques similar to the ones adopted for extremal
black holes, we would be successful in describing nonex-
tremal black holes by referring to the results of this Letter.

Before we close, let us comment on a couple of impor-
tant points. The representations of M0 are nondiagonal
[33,35,40], a feature reminiscent of structures encountered
in logarithmic CFTs. Thus, unitarity in 2D GCFTs
deserves a more careful analysis. This off-diagonal nature
is also relevant for entropy considerations. In fact, the
density of states in (20) is only a good approximation in
the Cardy regime of large charges to the full partition
function ZGCFT ¼ Tre2�i	L0e2�i
M0 . Outside this regime,
the off-diagonal corrections to the Cardy-like formula will
become important.

Our setup is also interesting because it allows us to
address questions in cosmological backgrounds using a
holographic description. There are open questions in this
context. The shifted-boost orbifold has a classically stable
Cauchy horizon [45] when its singularity is interpreted as
an orientifold in string theory [42]. It would be desirable to
have a quantum version of this statement when including
coupling to matter. It is also natural to investigate whether
these solutions can be interpreted as thermal states in the
2D GCFT dual, for instance, by computing their quasinor-
mal modes.
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