
Fluctuations of 1=f Noise and the Low-Frequency Cutoff Paradox

Markus Niemann,1 Holger Kantz,2 and Eli Barkai3

1Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
2Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
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Recent experiments on blinking quantum dots, weak turbulence in liquid crystals, and nanoelectrodes

reveal the fundamental connection between 1=f noise and power law intermittency. The nonstationarity of

the process implies that the power spectrum is random—a manifestation of weak ergodicity breaking.

Here, we obtain the universal distribution of the power spectrum, which can be used to identify

intermittency as the source of the noise. We solve in this case an outstanding paradox on the non-

integrability of 1=f noise and the violation of Parseval’s theorem. We explain why there is no physical

low-frequency cutoff and therefore why it cannot be found in experiments.
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The power spectrum SðfÞ of a wide variety of physical
systems exhibits enigmatic 1=f noise [1,2] at low
frequencies

SðfÞ � const

f�
; where 0< �< 2: (1)

Starting with Bernamont [3], in the context of resistance
fluctuations of thin films, many models of these widely
observed phenomena were put forward. Indeed, 1=f noise
is practically universal, ranging fromvoltages and currents in
vacuum tubes, diodes, and transistors, to annual amounts of
rainfall, to name only a few examples. A closer look at the
phenomenon reveals several themes which demand further
explanation. The first is that 1=f noise is not integrable:R1
�1 SðfÞdf ¼ 1, due to the low-frequency behavior,

when � � 1. This violates the Parseval theorem from which
one may deduce that the spectrum of a random process is
integrable (see details below). So, how canwe find 1=f noise
in a laboratory if a mathematical theorem forbids it? One
simple explanation would be that the phenomenon has a
cutoff at some low frequency, namely, that below f < f0
Eq. (1) is not valid. Experimentalists have therefore carefully
searched for this cutoff, increasing the measurement time as
far as is reasonable: three weeks for noise in metal-oxide-
semiconductor field-effect transistor (MOSFET) [4] and
300 years for weather data [5]. No cutoff frequency is
observed even after these long measurement times. This is
one of the outstanding features of 1=f noise. A second
old controversy, related to the first, is the suggestion of
Mandelbrot [6] that models of 1=f noise for � � 1 should
be related to nonstationarity processes, although the nature of
this nonstationarity is still an open question [7,8]. Further,
experiments find that at least in some cases the amplitude
of the power spectrum varies among identical systems
measured at different times, but the shape and in particular
the values of the exponent � are quite consistent [1,2,9].

This means that a 1=f spectrum is a non-self-averaging
observable, at least in some systems.
While these observations where made long ago, the

verdict on them is not yet out. However, recent measure-
ments of blinking quantum dots [10–12], liquid crystals in
the electrohydrodynamic convection regime [13], biore-
cognition [14], and nanoscale electrodes [9] shed new light
on the nature of 1=f noise. These systems, while very
different in their nature, reveal a power law intermittency
route to 1=f noise. This means that power law waiting
times in a microstate of the system are responsible for
the observed spectrum. This approach was suggested as a
fundamental mechanism for 1=f noise in the context of
intermittency of chaos and turbulence, with the work of
Manneville [15]. Subsequently, it has been found in many
intermittent chaotic systems [16–19] and has been used
successfully as a model for transport in geological forma-
tions [20]. For a quantum dot driven by a continuous wave
laser, this mechanism means that the dot switches from a
dark state to a bright state where photons are emitted and
that sojourn times in both states exhibit a power law
statistics that is scale free [21,22]. Waiting times probabil-

ity density functions (PDFs) in these states follow c ð�Þ �
��ð1þ�Þ and 0<�< 1. The dynamics is scale free because
the average sojourn times diverge, and we expect weak
ergodicity breaking [23,24]. This means that the power
spectrum remains a random variable even in the long
time limit [25,26].
Here, we investigate the non-self-averaging power

spectrum and show that indeed this observable exhibits
large but universal fluctuations while the estimation of �
is rather robust. Our work gives experimentalists a way
to verify whether a data set exhibiting 1=f noise belongs to
the intermittency class, and this we believe will help
unravel the origin of an old mystery of statistical physics.
We also remove the paradox based on Parseval’s identity,
showing that as t ! 1 the integrability remains and that
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there is no cutoff frequency f0. So, experimentally search-
ing for this ‘‘lost’’ low frequency might be in vain.

Parseval’s identity and 1=f noise.—We consider a mea-
surement of a random signal IðtÞ in the time interval (0, t), so
that its Fourier transform is ~Itð!Þ ¼ R

t
0 Iðt0Þ expð�i!t0Þdt0.

The power spectrum Stð!Þ¼½~Itð!Þ~I�t ð!Þ�=t is considered
in the long measurement time limit. The ensemble average
power spectrum is hStð!Þi. Note that, in an experiment with
one realization of the time series, for example, a measure-
ment of the intensity of a single molecule or a quantum dot,
the ensemble average is not performed, although in experi-
ments one introduces smoothing methods which reduce
the noise level of the reported power spectrum [27].
More importantly, note that the integral over the power
spectrum is

Z 1

�1
Stð!Þd! ¼ 1

t

Z 1

�1
d!

Z t

0
dt1 expð�i!t1ÞIðt1Þ

�
Z t

0
dt2 expði!t2ÞIðt2Þ

¼ 2�

t

Z t

0
I2ðt1Þdt1; (2)

where we used a well known identity of the delta functionR1
�1 d! exp½�i!ðt1 � t2Þ� ¼ 2��ðt2 � t1Þ and Stð!Þ ¼

Stð�!Þ by definition. For any bounded process, be it ergo-
dic or nonergodic, stationary or nonstationary, I2ðtÞ �
ðImaxÞ2, and hence

R1
�1hStð!Þid! � 2�ðImaxÞ2. So, the

integral is finite for a wide class of processes. As a conse-
quence, the nonintegrable 1=f noise is strictly prohibited.
The classical way out was to assume a violation of the 1=f
behavior in the limit of f ! 0.

The ensemble average of Eq. (2), under the additional
assumption that the process reaches a stationary state,
reads limt!1

R1
�1hStð!Þid! ¼ 2�hI2i. If the system is

ergodic, i.e., I2 ¼ R
t
0 I

2ðt0Þdt0=t ! hI2i, we have for a

single trajectory Iðt0Þ

lim
t!1

Z 1

�1
Stð!Þd! ¼ 2�hI2i: (3)

Thus fluctuations of the total area under the power
spectrum are an indication for ergodicity breaking.

Model.—For simplicity, we consider a two-state model,
with a state up where IðtÞ ¼ I0 and down with IðtÞ ¼ �I0.
The sojourn times in these states are independently iden-
tically distributed random variables with PDFs c ð�Þ. Thus,
after waiting a random time in any state (called an epoch),
the particle chooses the next state to be up or down with
equal probability. The waiting time PDFs have long tails

c ð�Þ / ��ð1þ�Þ with 0<�< 1; hence, the averages of
the up and down times are infinite. The Laplace t ! �

transform of these PDFs is for small �: ĉ ð�Þ ’ 1� ð��Þ�,
where � is a scaling constant. This is a simple stochastic
model of a blinking quantum dot, for which typically � ¼
1=2, although 1=2<�< 1 was also reported. A different

model would be alternating between the two states. These
processes are also known as a random telegraph signal [28].
Note that the random process IðtÞ with N internal states

and possible different waiting time distributions can
describe annealed trap models used for glass phenomenol-
ogy [24] or for continuous time random walks describing
the motion of single molecules in live cells [29]. Our
results for N > 2 are structurally similar to those for
N ¼ 2 but deserve their own discussion, which will be
presented in a longer paper. For these models, we have
derived detailed expressions for the power spectrum of
the process IðtÞ and its statistical properties.
Statement of the main results.—For �< 1, the expecta-

tion value of the spectrum is not constant but decreases
with measurement time hStð!Þi ’ t��1��ð!Þ. Expanding
the t-independent function ��ð!Þ for small frequencies !,
one finds a typical nonintegrable 1=f noise

hStð!Þi ’ C
t��1

!2��
: (4)

In general, the value Stð!Þ of the spectrum is a fluctuating
quantity even in the t ! 1 limit. The statistical behavior of
the general class of processes for large t (for pairwise
disjoint !i � 0) is fully described by the convergence in
distribution of

�
Stð!1Þ
hStð!1Þi ; . . . ;

Stð!nÞ
hStð!nÞi

�
! Y�ð�1; . . . ; �nÞ; (5)

where Y� is a random variable of normalized Mittag-
Leffler distribution with exponent � whose moments are
hYn

�i ¼ n!�ð1þ �Þn=�ð1þ n�Þ [30]. The �i are indepen-
dent exponential random variables with a unit mean. For
� ¼ 1, the Mittag-Leffler random variable becomes
Y1 ¼ 1, so that the powers Stð!iÞ of different frequencies
become independent exponentially distributed random
variables—a result known for several ergodic random
processes [31]. In the case of weak ergodicity breaking
(�< 1), the whole spectrum has a common random pre-
factor Y� which shifts the complete observed spectrum.
Many procedures for the estimation of the spectrum

from one finite time realization are designed to suppress
the statistical fluctuations due to the uncorrelated random
variables �i [27,31]. These cannot account for the fluctua-
tions of Y�, common to all estimators of a given realiza-
tion. For these procedures, the prefactor affects all
estimated values for the spectrum. However, being a com-
mon prefactor, it does not affect the shape of the estimated
spectrum so that such features as 1=f noise can be detected
independently of the realization.
Motivation of the results.—We focus here on the two-

state model introduced above. Let �i be the ith waiting time
and 	i ¼ �I0 the value taken during this waiting time. We

denote by Tj ¼ Pj�1
i¼1 �i the end of the epochs. If nðtÞ is the

number of completed waiting times up to time t, we can
approximate by ignoring the waiting time in progress at t
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Z t

0
d� expði!�ÞIð�Þ ’ XnðtÞ

j¼1

djð!Þ; with

djð!Þ ¼ i	j expði!TjÞ
1� expði!�jÞ

!
:

(6)

With this approximation, one obtains

Stð!Þ ’ 1

t

XnðtÞ
k;l¼1

dkð!Þdlð�!Þ: (7)

Assuming that nðtÞ is for large t independent of the waiting
time of a single step �i and using h	i	ji ¼ �ijI

2
0 , we get for

the ensemble average [32]

hStð!Þi ’ hnðtÞi
t

hd1ð!Þd1ð�!Þi

’ I20
hnðtÞi
t

2� ĉ ði!Þ � ĉ ð�i!Þ
!2

: (8)

It has been shown that nðtÞ ’ Y�t
�=½�ð1þ �Þ��� [33,34].

Therefore,

hStð!Þi ’ I20t
��1

�ð1þ �Þ��
2� ĉ ði!Þ � ĉ ð�i!Þ

!2

’ 2I20 cosð��=2Þ
�ð1þ �Þ

t��1

j!j2��
as ! ! 0: (9)

The last line shows the typical 1=f noise [26]. It is important
that the observation limit t ! 1 is taken before the fre-
quency limit ! ! 0.

We motivate the main result Eq. (5) with the help of a
random phase approximation. The random phase approxi-
mation assumes that terms of the form expði!TjÞ are just

random phases, and any average over them vanishes.
Especially, hdj1ð
1Þ 	 	 	 djnð
nÞi ¼ 0 if 
1Tj1 þ 	 	 	 þ

nTjn � 0 for some Tj’s (the 
 being �!). Looking at

the second moment of Eq. (7) to show the convergence in
distribution by the method of moments [35] and using (8),

hS2t ð!Þi ’ 1

t2

� XnðtÞ
k;l;p;q¼1

dkð!Þdlð�!Þdpð!Þdqð�!Þ
�

’ 2

t2
hnðtÞ2ihd1ð!Þd1ð�!Þi2 ’ 2hY2

�ihStð!Þi2; (10)

where we ignored terms with k ¼ l ¼ p ¼ q as there are
only hnðtÞi of them. The factor 2 stems from the fact that
the sum in the first line of Eq. (10) has contributions for
k ¼ l, p ¼ q and for k ¼ q, l ¼ p. In contrast to this, for
the term hStð!1ÞStð!2Þi with !1 � !2, this symmetry
factor will not be present. Following the same steps as in
Eq. (10) gives

hStð!1ÞStð!2Þi ’ hY2
�ihStð!1ÞihStð!2Þi: (11)

This shows the equality of the second moments of Eq. (5).
The equality of the higher moments follows similarly by
using combinatorial methods to determine these symmetry

factors. We see that the random number of jumps nðtÞ is
responsible for the Mittag-Leffler fluctuations while the
random phases generate the exponential noise [32]. The
exact proofs for the general model will be published in a
longer paper.
Until now, we considered the case that the measurement

starts with a renewal. In several circumstances, it happens
that the measurement starts at a time �T after the process
has started. If the measurement time goes to infinity as �T
stays constant, one can show that this does not change the
result (the first waiting time is a residual lifetime [34,36]
which can be neglected for large t). The distribution of nðtÞ
in the case that �T and the measurement time are of the
same order of magnitude has been considered by one of
the authors (E. B.) [37]. As the common prefactor is
determined by the statistics of nðtÞ, we conjecture that
the Mittag-Leffler statistics is replaced by the results of
Ref. [37] in this case.
Numerical results.—We simulated the two-state model

with I0 ¼ 1 for different lengths of time series and differ-
ent �. The waiting times were generated by using a uni-
formly distributed random number 0<X � 1 and setting

� ¼ c�X
�1=�. The constant c� was chosen such that

hnð1Þi ’ 10 000. The ensemble consists of 10 000 realiza-
tions of the time series.
In Fig. 1(a), we have plotted different realizations of

StðfÞ. The stochastic fluctuations inside and between the
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FIG. 1 (color online). (a) StðfÞ plotted for different realizations
(� ¼ 0:5, t ¼ 102). Inside each realization one has fluctuations
following exponential distributions. Different realizations are
shifted with respect to each other due to the random prefactor
Y�. (b) Ensemble average of StðfÞ plotted for different lengths t
of the time series. One sees the decay of the spectrum hStðfÞi ’
0:101t�1=2f�3=2 [Eq. (9)] both in time and frequency. The cross-
over frequency is around fc ’ 0:51=t [Eq. (14)]. The simulations
perfectly match the theory [Eqs. (9) and (13)].
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realizations are clearly observable. In Fig. 1(b), the en-
semble average of the power spectrum for different lengths
is plotted. The 1=f spectrum and its decay with observation
time is clearly visible. Note that at very low frequencies we
find Stð!Þ ’ const independent of frequency—an effect we
will soon explain.

In a second step, we want to check the statistical prop-
erties described by Eq. (5). To isolate the Mittag-Leffler
fluctuations, we have calculated the spectrum for a fixed set
of N frequencies !i and determined the values

M ¼ 1

N

XN
i¼1

Stð!iÞ
hStð!iÞi : (12)

As the exponential distributions are uncorrelated, they
average out for sufficiently large N, and the value taken
by M should be distributed as the Mittag-Leffler distribu-
tion Y�. We have compared this for different � values. The
histogram of M values with the Mittag-Leffler density is
shown in Fig. 2 for � ¼ 0:2, � ¼ 0:5, and � ¼ 0:8. A
good agreement with the theory is apparent.

These two tests on the numerical data can also be easily
applied to measured data by checking for the decay with
t1�� and comparing the distribution of the frequency
averaged spectrum with a Mittag-Leffler distribution. The
existence of these two properties hints at an intermittency
caused 1=f noise.

Removing the nonintegrability paradox of 1=f noise.—
As mentioned in the introduction, the 1=!2�� noise is
nonintegrable

R1
0 hSð!Þid! ¼ 1 due to the low-frequency

behavior. This in turn violates the simple bound we have
found. To start understanding this behavior, notice that
the random phase approximation breaks down when
! ¼ 0, as the phase !Tn is clearly nonrandom. Hence,

the distribution of the power spectrum in Eq. (5) is not
valid for ! ¼ 0 and this case must be treated separately.
For ! ¼ 0, we have for a single realization Stð0Þ ¼ I2t

with the time average I ¼ R
t
0 Iðt0Þdt0=t. For ergodic pro-

cesses, the time average I is equal to the ensemble average
hIi. However, for nonergodic processes under investiga-
tion, the time average I remains a random variable even in
the infinite time limit [25,38]. For the two-state process
introduced above, we have I ¼ I0ðTþ � T�Þ=t, where T�
is the total time spent in states up or down. The value of I
follows an arcsine-like distribution [25,34,38,39]. This
simply means that, for a given realization, the system
will spend most of the time either in state up or in state
down, and hence I is random, which would not be the case
for an ergodic process.
This has a consequence for the nonintegrability of the

power spectrum. As Stð0Þ ¼ I2t, the spectrum at zero
frequency tends to infinity, but for any finite measurement
time it is finite. For the two-state model, we have on
average hStð0Þi ¼ I20ð1� �Þt. So, indeed, theoretically,

there is a low-frequency cutoff of the divergence of the
1=f spectrum, and we now define a crossover frequency!c

for the transition between the zero-frequency limit, where
arcsine statistics takes control (failure of random phase
approximation), and higher frequencies, where the
Mittag-Leffler statistics takes control. This frequency is
defined by merging the two behaviors,

hStð!cÞi ’ C
t��1

!2��
c

¼ hStð0Þi: (13)

We see that

!c ¼ ðC=hI2iÞ1=ð2��Þ 1
t
: (14)

The values of hI2i and C can be obtained from measure-
ments or from theory, for example, for the two-state model
hI2i¼I20ð1��Þ and C ¼ 2I20 cosð��=2Þ=�ð1þ �Þ. More

importantly, we see that the crossover frequency depends
on the measurement time as 1=t. Although at first sight it
is surprising, this is the only way how such a crossover can
take place in the absence of a characteristic time scale for
dynamics: The measurement time itself sets the time scale
for crossover. Additionally, 1=t appears as the frequency
resolution of the discrete Fourier transform typically used
in spectral analysis. Importantly, experiments report a
lowest frequency at f ¼ 1=t.
We see that the increasing measurement time merely

stretches the domain of frequency where the 1=f noise is
observed, which is clearly seen in the numerical simulations
[see Fig. 1(b)]. There is no point in increasing measurement
time in order to better identify the crossover since a time-
independent crossover frequency does not exist. Thus, the
1=f noise stretches to the lowest frequencies compatible
with measurement time (of the order of 1=t). This resolves
the nonintegrability paradox. The amplitude of the power
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FIG. 2. Distributions of the frequency averaged spectra M
[see Eq. (12)]. The lines are the analytic probability densities
of the Mittag-Leffler distributions (t ¼ 104).
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spectrum itself is also decreasing in time, in such a way that
integrability is maintained. Namely,Z 1

0
hStð!Þid! ’ hI2it!c þ

Z 1

!c

Ct��1=!2��d!

¼ 2� �

1� �
ðhI2i1��CÞ1=ð��2Þ (15)

is indeed finite and time independent.
Thus, we conclude that the power spectrum is integrable,

as it should be. This seems to indicate the generality of our
results since a crossover frequency is only found in few
experiments. From a different angle, assuming that the
natural frequency is also the limit of measurement
!c � 1=t, we must demand the decrease of the amplitude
of power spectrum with time to maintain integrability
as required for bounded signals. This, together with the
universal fluctuations of 1=f noise [Eq. (5)], is a strong
fingerprint of power law intermittency. The tools developed
here can be tested in a vast number of physical systems.
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