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We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit

state. Using a liquid state Nuclear Magnetic Resonance setup and employing geometric discord, we

evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The

method is applicable to any 2 � d system and provides, in terms of number of measurements required,

an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem.

The negativity of quantumness is measured as well for reference. We also observe the phenomenon of

sudden transition of quantum correlations when local phase and amplitude damping channels are applied

to the state.
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Introduction.—Quantum mechanics rules the physical
world, but sometimes its effects can be elusive. In particu-
lar, entanglement [1], the genuinely quantum type of cor-
relation shared by two parts of a composite system, is not
directly measurable in the laboratory. Indeed, there is no
self-adjoint operator quantifying the amount of entangle-
ment of a state. Hence, an a priori knowledge of the
density matrix appears necessary to evaluate entanglement.
This is a serious drawback, since dealing with high dimen-
sional systems makes the state reconstruction extremely
demanding if not unfeasible in terms of required resources.
The problem has been overcome by introducing nontrivial
lower bounds to entanglement measures, expressed as non-
linear functions of the density matrix coefficients, whose
values can be detected by means of a limited number of
measurements [2,3].

However, it has been acknowledged that even separable
(unentangled) mixed states show a distinctive nonclassical
behavior, benchmarked by their quantum discord [4,5].
Arguably considered the most general form of quantum
correlations, it quantifies the minimum induced distur-
bance on a state of a bipartite system when a local mea-
surement is made on one subsystem. Currently, massive
theoretical and experimental efforts are dedicated to
discover the potential of such correlations for quantum
information processing [6–15]. The reason is that discord
has appealing properties: For pure states, it reduces to
entanglement, while for mixed states, even unentangled
states (apart from a subset of null measure) have non-
vanishing discord [16]. A number of phenomenological
investigations have proven discord to be easier to create
and far more robust than entanglement under decoherent
dynamics [17]. In spite of that, even if at the theoretical
level a plethora of discordlike measures have been

introduced [6,18], and some discord witnesses have been
implemented [19–21], the situation is similar to entangle-
ment: There is not an observable quantity grasping the
amount of such general quantum correlations in a state.
One could try to recast a measure as a function of density
matrix elements and therefore of observable quantities, but
most known quantifiers are entropic and, thus, cannot be
associated with observables. Taking into account distance-
based measures offers a solution to such a conundrum.
In this Letter, following the theoretical proposal of

Ref. [22], we report the experimental measurement of
quantum correlations of unknown two-qubit states in a
room-temperature NMR system [23–26]. In this setting,
the information is stored in the nuclear spins, while trans-
formations and state preparation are implemented by
applying highly controllable radio frequency (rf) pulses,
magnetic field gradients, and evolutions under spin inter-
actions [27]. On the other hand, the environment affects the
spin system by inducing relaxation that drives the system
back to the thermal equilibrium distribution according to
two independent characteristic times T1, T2 [25].
We pick primarily the geometric discord DG as the

quantifier of bipartite quantum correlations [28]. Its
peculiarity is that it can be expressed, for arbitrary states
of 2 � d systems, as a state-independent function of the
density matrix elements, and consequently in terms of
observables [22,29]. In fact, there is no need to have full
information on the state in order to measure geometric
discord. We experimentally verify the theoretical results
by preparing an unknown two-qubit Bell diagonal state
(the choice of the state is due to experimental convenience
exclusively) and retrieving the value of geometric discord
by means of local measurements over one of the sub-
systems. Then, we investigate the robustness of quantum
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correlations under phase damping and amplitude damping
channels acting separately on each qubit. It is predicted
that, by appropriately engineering the initial state, mea-
sures of discord should undergo a sudden transition in their
dynamical evolution [30,31], exhibiting different regimes
of resilience to decoherence under noisy conditions. We
carry out a comprehensive analysis of general quantum
correlations. We monitor in fact the evolution of geometric
discord [28], of its lower bound defined in Ref. [22], as well
as of the so-called negativity of quantumness [32] for the
produced states (the latter measure, here investigated for
the first time in open systems), linking the singularity in
their expression with the discontinuity in the dynamics.

It is important to discuss the consistency of geometric
discord DG as a reliable estimator of quantum correla-
tions. Recent works have shown that measures built on
the Hilbert-Schmidt norm, as geometric discord is, can
increase under local reversible operations on the unmeas-
ured subsystem, being biased by the purity of the global
state [33,34]. In spite of that, geometric discord is still a
useful signature of quantum correlations in a number of
relevant cases. For example, it can be legitimately used to
investigate correlations between a system and environment
in open quantum evolutions [35], which are globally uni-
tary, thus leaving the purity unchanged. Even for a bipartite
state under local decoherent evolutions, as studied in this
Letter, the geometric discord reliably identifies the sudden
transition point in the dynamics as well as other full-
fledged measures of discord [4,30,31]. Specifically, for a
system of two qubits (keeping the dimension fixed), as in
our case, the problem highlighted in Ref. [33] cannot
occur, and DG admits moreover an operational interpreta-
tion in terms of fidelity of remote state preparation [11],
while also bounding from above [36] the entanglement
quantified by the negativity [37]. In general, DG is a valid
lower bound to measures of quantum correlations based on
relative entropy [6].

As anticipated, we also investigate experimentally two
other discordlike quantities. First, we take into account a
nontrivial experimentally friendly lower bound Q to geo-
metric discord [22]: such a quantity is less accurate and
does not reveal any of the mentioned dynamical phe-
nomena, as its expression is continuous [38]. Then, we
consider as a reference a fully bona fide measure of dis-
cord, the negativity of quantumness QA

N introduced in

Ref. [10] and discussed in detail in Ref. [32]. Such a
measure quantifies the minimum negativity [37] created
with an apparatus during a local measurement over one
subsystem of a bipartite system. It can be alternatively
interpreted (when the measured subsystem is a qubit) in
terms of the minimum trace distance from the set of zero-
discord states. The QA

N is unfortunately harder to compute

and less accessible experimentally; to measure it from
direct data, without tomography, we need a partial knowl-
edge of the form of the state, specifically the fact that it is a

Bell diagonal state. Such a measure is found to detect the
same dynamical features as geometric and entropic discord
(see also Ref. [39]).
Theoretical predictions.—In the following, we consider

a bipartite state of a 2 � d system, described by a density
matrix written in the Bloch representation [40]:
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where R�� ¼ Tr½�ð�� � ��Þ�, �0 ¼ I2, �� (� ¼ 1, 2, 3)
are the Pauli matrices and f��g their d-dimensional
generalizations, while ~x ¼ fx�g, ~y ¼ fy�g are the column
vectors associated to each subsystem, and C ¼ ðc��Þ is the
correlation matrix. Quantum discord evaluates the mini-
mum induced disturbance on the state by a measurement
over one subsystem, say A. One can adopt a geometric
point of view and quantify quantum correlations as the
minimum distance of the state to the set of classical-
quantum states, i.e., the zero-discord states, which take
the form � ¼ P

ipijiihijA � �Bi, where
P

ipi ¼ 1 and
fjiig is an orthonormal vector set [6]. In this context, the
geometric discord introduced in Ref. [28] is defined as
DGð�Þ ¼ 2min�k�� �k22, where the squared Hilbert-

Schmidt norm kMk22 ¼ Tr½MyM� is picked as metric.
An explicit formula of geometric discord for 2 � d states
is DGð�Þ ¼ 1

2 ðj ~xj2 þ kCk22 � 4kmaxÞ ¼ 2ðTr½S� � kmaxÞ,
where kmax is the largest eigenvalue of the matrix S ¼
1
2d ð ~x ~xT þ CCTÞ. Expressing kmax explicitly, the geometric

discord can be recast as a state-independent function of the
density matrix elements [22]:

DG ¼ 4

3
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where �¼arccosf ffiffiffi
2

p ð2Tr½S�3�9Tr½S�Tr½S2�þ9Tr½S3�Þ�
ð3Tr½S2��Tr½S�2Þ�ð3=2Þg. Fixing � ¼ 0, one obtains a tight
lower bound Q to the geometric discord, which is itself
a faithful estimator of quantum correlations [22]. The
result allows us to recast DG and Q as functions of the
expectation values of a set of observables fOig: DG ¼
fDG

½hOii�; Q ¼ fQ½hOii� [38]. The choice of the specific

operators depends on the experimental setting. A proposal
for an all-optical setup has been advanced in Refs. [22,29].
In the present Letter, an NMR system is used. In this
context, the column vectors ~x and ~y are proportional to

the magnetization of each nuclear spin, ~x ¼ 2h ~I � I2i and
~y ¼ 2hI2 � ~Ii, where ~I ¼ fIx; Iy; Izg is the nuclear spin

operator, which for spins-1=2 is ~I ¼ ~�=2. The elements
of the correlation matrix c�� ¼ h�� � ��i ¼ 4hI� � I�i
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and ~x ¼ 2h ~I � I2i are proportional to a combination of
multi quantum coherences [24,25].

A full state reconstruction demands 4d2-1 spin measure-
ments. However, to compute DG and Q one can get
rid of d2-1 local measurements on one the subsystems,
as the Bloch vector ~y does not account for the S
matrix. Indeed, quantum correlations are evaluated from
observables of the type hO��i ¼ Tr½�� � ����; � ¼
1; . . . ; 3; � ¼ 0; . . . ; d2 � 1, but global measurements
can be replaced by local ones [26]:

Tr½ð�� � ��Þ�� ¼ Tr½ð�1 � IdÞ����;
��� ¼ U���U

y
��;

(3)

where U�� ¼ KA!BR	�;	�
ð���Þ, for R	�;	�

ð���Þ ¼
RA
	�
ð���Þ � RB

	�
ð���Þ, being RAðBÞ

	�ð�Þ ð���Þ a rotation by

an angle ��� over the direction 	�ð�Þ, the indexes �, � ¼
1, 2, 3 refer to the rotations for measuring the C matrix
elements and KA!B represents the CNOT gate with A being
the control qubit (see the Supplemental Material [41] for
details).

The negativity of quantumness QA
N is defined for 2 � d

systems as the minimum trace distance from the set of
classical-quantum states (see Ref. [32] for other definitions
and interpretations), QA

Nð�Þ ¼ 1
2min�k�� �k1, where

kMk1 ¼ Tr½
ffiffiffiffiffiffiffiffiffiffiffiffi
MyM

p
� is the trace norm. For the particular

case of Bell diagonal two-qubit states, QA
N is analytically

computable [32,42]. Denoting the ordered singular values
of the Bloch correlation matrix C as jcij � jcjj � jckj,
where i, j, k are permutations of 1, 2, 3, then the negativity
of quantumness is given by half the intermediate one,
QA

N ¼ jcjj=2. Therefore, the negativity of quantumness

can be also experimentally determined as described above.
Experimental results.—In our implementation we set

d ¼ 2. The state of a NMR two-qubit system in the high
temperature approximation is given by � ¼ 1

4 I4 þ "��,

where " ¼ @!L=4kBT � 10�5 is the ratio between the
magnetic and thermal energies, !L is the Larmor fre-
quency, kB is the Boltzmann constant, and T the room
temperature [23]. All measurements and transformations
affect only the deviation matrix ��, which in fact contains
the information about the system state. The unitary opera-
tions over �� are implemented by radiofrequency pulses
and evolutions under spin interactions with an excellent
control of the rotation angle and direction. NMR probes the
transverse magnetization, which is proportional to the
average values of the hIxi or hIyi operators, so only a few

elements (single quantum coherences) are directly acces-
sible. In this direction, to obtain a full characterization of
�� it is necessary to execute a set of independent mea-
surements after applying specific rotations to the system,
which characterize NMR quantum state tomography [25].
It is worth remarking that, since in NMR experiments
only the deviation matrix is detected, the calculations of

the ~x vector and of the correlation matrix C are done in
units of ".
The experiments were performed on a liquid state

carbon-13 enriched chloroform sample (CHCl3) at room
temperature, with the two qubits being encoded in the 1H
and 13C spin- 12 nuclei [41]. Two initial Bell diagonal states

�1;2 ¼ 1
4 ðI4 þ

P
ic

ð1Þ;ð2Þ
i �i � �iÞwere prepared by mapping

the correlation matrix into the deviation matrix, as
described in Refs. [31,41]. Note that the methodology
here employed is not restricted to this class of states, but
extends to arbitrary states of 2 � d systems. To verify the
correct preparation of the states, the pulse sequences pro-
posed in Refs. [20,31] were applied followed by a quantum
state tomography procedure [43]. The resulting deviation
matrices are shown as block diagrams in Fig. 1. We remark
that tomography is performed just to test the quality of the
state preparation procedure, and the acquired information
is not used for the direct estimation of quantum correla-
tions. The interaction with the environment in a NMR
system is described by phase and amplitude damping
channels [44]. As can be seen in Refs. [20,31], the corre-
lations presented in the initial state of Fig. 1(a) should
decay monotonically in time, while the state of Fig. 1(b)
is expected to exhibit a nontrivial behavior of quantum
correlations during the evolution.
According to Eq. (1) and the accompanying discussion,

quantum correlations in a two-qubit system are obtained
from the expectation values of the correlation matrix
elements c�� ¼ h�� � ��i ¼ Tr½ð�� � ��Þ�� and ~x ¼
h ~� � I2i. These can be calculated for instance from the
experimentally tomographed deviation matrix. However,
using the rotations described by Eq. (2) with a proper set of
angles, the evaluation of DG and Q is reduced to a set of

FIG. 1 (color online). Block diagrams for the deviation density
matrix related to the Bell diagonal initial states. For �1 in (a)

we have jcð1Þ1 j ¼ jcð1Þ2 j ¼ jcð1Þ3 j ¼ 0:2, while �2 in (b) reads

jcð2Þ1 j ¼ 0:5, jcð2Þ2 j ¼ 0:06, and jcð2Þ3 j ¼ 0:24.
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spin magnetization measurements on one of the qubits.
This means that, after a correct set of rotations (rf pulses)
are applied to the prepared state, the geometric discord
(and its lower bound) can be determined directly from the
NMR signals (apart from the "2 factor), without having to
know the state. We dub this procedure as direct measure-
ment. The procedure is repeated until the thermal equilib-
rium state is reestablished. Concerning the negativity of
quantumness [32], a partial knowledge of the state is
instead required to evaluate its value. In particular, assum-
ing (as a posteriori verified by tomography; see
Refs. [41,45]) that the state remains in Bell diagonal
form during the evolution, then the direct method still
suffices to extract the correct value of QA

N . To benchmark

the effectiveness of the direct method, overall, we com-
pared its outcomes with the results obtained for the corre-
sponding measures of quantum correlations by evaluating
them on the state reconstructed by complete tomography as
well.

The results obtained for DG and Q using the direct
measurement and tomography procedures as well as the
theoretical predictions are reported in Fig. 2 for both
experimentally produced states. In Fig. 3, we present the
results obtained for QA

N by direct measurements (the 1H
nucleus was detected), tomography, and theoretical pre-
dictions for both states. We highlight a satisfactory

agreement between the direct measurements, the tomo-
graphic data, and the theoretical predictions. This demon-
strates that we are able to directly quantify bipartite
quantum correlations in unknown (or partially known, in
the case of QA

N) two-qubit states with our NMR setup. In

particular, for the first time the negativity of quantumness
is observed to undergo sudden transition in the same
dynamical conditions as the geometric discord and the
entropic discord [30,39]. Furthermore, directly assessing
the value of DG provides a nontomographic method to
estimate a priori the suitability of the produced states for
quantum communication via remote state preparation [11].
Conclusions.—NMR systems are a natural arena for

quantum information processing with negligible entangle-
ment and, thus, ideal testbeds for investigating dynamical
properties of quantum correlations in open system dynam-
ics. In this respect, the information stored in the density
matrix of a state is often redundant to the quantification of
its quantum correlations. Recent theoretical findings allow
one to implement optimized protocols by reducing the
number of required measurements as compared to the
full state reconstruction. Here we have considered an
NMR system and detected the quantum correlations of a
two-qubit Bell diagonal state. Furthermore, we observed

FIG. 2 (color online). Time evolution ofQ andDG for the state
�1 in (a) and (b), and �2 in (c) and (d). The green dots represent
the direct measurement and the black open squares corresponds
to tomography results. The red lines depict the theoretical
predictions. The relaxation times retrieved from experimental
data are: T1 ¼ 3:57 s and T2 ¼ 1:2 s for the hydrogen, and
T1 ¼ 10 s and T2 ¼ 0:19 s for the carbon. Quantum correlations
are displayed in units of "2.

FIG. 3 (color online). Time evolution of jc1j (upward triangle),
jc2j (downward triangle), and jc3j (hexagon) for state �1 in (a),
and �2 in (c). The open symbols represent the tomography
results and the filled symbols represent the direct measurement.
Note that for each jcijði ¼ 1; 2; 3Þ both forms of measurement
are superimposed. In (b), for the initial state �1, and (d), for the
initial state �2, the green dots represent the direct measurement
and the black squares represent the tomography results. The red
lines are the theoretical predictions for QA

N . Quantum correla-

tions are displayed in units of ".
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the sudden transition of geometric discord and negativity
of quantumness under phase and amplitude damping chan-
nels. The sudden transition and, in particular, the freezing
[30], common to various measures of quantum correlations
other than entanglement under particular decoherent
evolutions, is certainly worthy of further theoretical and
experimental investigation [46].

We finally stress that the reported experiment has to be
taken as a proof of principle. Thanks to the explicit closed
formula, without any knowledge of the initial state of a
2 � d system, it is possible to evaluate geometric discord
by 3d2 local spin measurements, and tune the dynamics in
order to protect quantum correlations from decoherence.
Also, it is remarkable that an optical setup would allow us
to detect the quantumness of correlations by only seven
projective measurements for any d [22], but the implemen-
tation of such quantum operations appears challenging
even with state-of-the-art technology [38].
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