PRL 110, 140407 (2013)

PHYSICAL REVIEW LETTERS

week ending
5 APRIL 2013

Fate of a Bose-Einstein Condensate in the Presence of Spin-Orbit Coupling
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Intensive theoretical studies have recently predicted that a Bose-Einstein condensate will exhibit a
variety of novel properties if spin-orbit coupling is present. However, an unambiguous fact has also been
pointed out: Rashba coupling destroys a condensate of noninteracting bosons even in high dimensions.
Therefore, a conceptually important question arises as to whether or not a condensate exists in the
presence of interaction and a general type of spin-orbit coupling. Here we show that interaction
qualitatively changes the ground state of bosons under Rashba spin-orbit coupling. Any infinitesimal
repulsion forces bosons either to condense at one or two momentum states or to form a superfragmented
state that is a superposition of infinite numbers of fragmented condensates. The superfragmented state is
unstable against the anisotropy of spin-orbit coupling in systems with large numbers of particles, leading

to the revival of a condensate in current experiments.
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Spin-orbit coupling (SOC) is the underlying mechanism
for many fundamental quantum phenomena, ranging from
the atomic fine structure to the newly discovered novel
properties of topological insulators [1,2]. The recent real-
ization of synthetic SOC for neutral alkali atoms in labo-
ratories provides physicists with a new platform to study
the effects of SOC in many-body systems, in which a wide
range of parameters can be well controlled in experiments
[3-6]. In particular, spin-orbit coupled bosons offer phys-
icists a unique opportunity to explore how SOC may
manifest itself at the macroscopic level. As it is known as
a textbook result that bosons naturally form a condensate at
the ground state in three and two dimensions, intensive
theoretical effort has predicted a number of macroscopic
quantum phenomena exhibited by a Bose-Einstein conden-
sate in the presence of SOC [7-16].

On the other hand, a significant effect of SOC on non-
interacting bosons has also been realized recently. It was
pointed out that some types of SOC may completely
destroy a noninteracting condensate at zero or any finite
temperatures even in high dimensions [17-19]. To see this
effect, one can start from the single-particle Hamiltonian
for spin-orbit coupled bosons, which can be written as
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where D is the dimension, o =1, |, \if:r,(r) (\if(,(r)) is the
creation (annihilation) operator at r, and M is the mass.
The part of SOC in the Hamiltonian is described by
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where A, is the coupling strength. For D =3 the
low energy part of the single-particle spectrum can be
written as
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where k = (k,, ky, k,) is the momentum and k; =
(ky, ky). For D = 2, one can simply set k, = 0 in Eq. (3).
Among all the configurations of SOC, Rashba coupling
corresponding to A, = A, = A is of particular interest. For
both D = 2 and D = 3, the kinetic energy minimum under
Rashba coupling becomes a circle in the x-y plane with
radius |k || = ky = MA/h?, which means an infinite
degeneracy of the single-particle ground state.
Correspondingly, the low-energy density of states becomes
that in (D — 1) dimension in the absence of SOC.
Therefore, a noninteracting condensate is completely
destroyed at zero temperature for D = 2 [19] and at any
finite temperature for D = 3 [17,18].

Whereas the disappearance of a noninteracting conden-
sate under Rashba coupling is rather clear, a few funda-
mental questions remain unanswered so far. (i) What is the
ground state of interacting bosons? Is it a trivial uncon-
densed state, an ordinary condensate, or an exotic many-
body state with novel correlations? (ii) If it is a condensate
or an exotic state, how does the uncondensed state of
noninteracting bosons change to these states when interac-
tion is turned on? (iii) What is the effect of anisotropy in
spin-orbit coupling? In this Letter, we shall present
answers to all of the above questions (i)—(iii).

We first note that the infinite degeneracy of single-
particle ground states makes interaction effects highly
nonperturbative. To determine the many-body ground state
amounts to selecting the state with the lowest interaction
energy from an infinitely degenerate subspace, which is
known to be a challenging problem, for instance, two-
dimensional electrons in quantum Hall regions [20]. For
studies of spin-orbit coupled bosons in the literature, a
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mean field approach has been adopted to compare energies
of a special class of states that can be described by con-
densate wave functions [8—14]. However, with the obser-
vation that SOC may completely destroy a condensate, one
naturally has concerns about the validity of mean field
approach. In particular, it is unclear whether interaction
will lead to an exotic many-body ground state other than an
ordinary condensate.

To explore the exact many-body ground state, we
expand the interaction between two-component bosons

-0 f dPr(g A (r) + gA2(r) + g (A1) (4)

in the basis of single-particle eigenstates, where 7, (r) =
P! (r)¥, (r) is the density operator, () is the volume of the
system, and g;—;, > 0, g1, > 0 are the intra- and interspin
repulsion. In this basis, the effective interaction can be
formulated as
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where

Uj;:j;;‘ = glzei(¢1—¢4) + g, + glei(¢1+¢2—¢3—¢4), (6)

I::; ([:¢>) is the creation (annihilation) operator in the sub-
space L composed of all single-particle ground states, and
¢ is the polar angle on the circle |k | | = kq [19].

Before presenting the details of our analysis, we first
summarize our main results here. (1) Any infinitesimal
repulsion forces bosons to form a single-particle conden-
sate or a fragmented condensate, distinct from noninteract-
ing systems where a condensate is absent. (2) Interaction
inevitably builds up a superposition of fragmented con-
densates with an even particle number, and the exact
ground state becomes a superfragmented state beyond the
prediction of mean field theory. (3) Superfragmented states
collapse in systems with large numbers of particles if a
finite anisotropy exists in SOC, leading to the revival of a
condensate in current experiments. The results (1)-(3)
answer the questions (i)—(iii) raised above.

We start from the two-body problem that can be solved
exactly to illuminate the underlying physics. The Fock
states can be written as either |¢, 0) = I:LLA,LHIO) for
0 #0 or |¢,0) = lA,:;LALlO}/\/E. 0 is the relative angle
between the two bosons on the circle. The diagonal term
of the interaction matrix element, i.e., the Hartree-Fock
energy Egl]: = (¢, 0U, | ¢, 6), where the superscript [N]
denotes an N-body system, can be written as

£ {g12(1 +cosh)/2+ g, + g, 6 F#0, o

T e + a1+ 22/2, 6 = 0.
Equation (7) shows that | ¢, 0) and | ¢, 7r) minimize Egl]; for
v <1 and vy > 1, respectively, where v = g,,/(g; + g2).
States with 8 # 0, 7 always have higher energies. For

v > 1, two bosons occupy two opposite points on the
circle; i.e., fragmentation occurs. Without SOC, it is well
known that fragmentation is energetically unfavorable due
to the cost of Fock energy when bosons occupy different
momentum states [21]. The presence of Rashba coupling
suppresses the term in Fock energy that is proportional to
g2 by a factor of cosf. Therefore, fragmentation may
occur at large enough g1,.

We now consider the off-diagonal term of the interaction
matrix elements. Note that for & # 7, each Fock state is
characterized by a unique finite momentum and cannot be
coupled by interaction which conserves the total momen-
tum. Therefore, they are eigenstates in the manifold of the
kinetic energy minimum. However, all states with § = 7
carry zero total momentum and can be coupled by inter-
action. The Hamiltonian within the zero momentum sub-
space can be written as

HA=E, ["apP}p
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+ [0 dpde' VI PLPy(1-5844),  (8)

where E, = g, + g, is the Hartree-Fock energy for
0=, PL = LL LL b is the pair creation operator, and
VEZ]W = (g, + g, %@ =), Equation (8) is equivalent to
to a one-dimensional ring with an ““infinite-range” tunnel-

ing [22]. The ground states are infinitely degenerate and
can be written as
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where v is an arbitrary integer other than 0 and 1.

The wave function in Eq. (9) describes a small super-
fragmented state composed by the superposition of small
fragmented condensates. It is straightforward to derive that
the corresponding ground state energy is exactly zero, in
spite of the repulsive interaction. As the eigenenergy of any
state with a finite total momentum is positive, we conclude
that the ground state for the two-body problem is always a
small superfragmented state, regardless of the ratio
between g1, and g; + g,. The underlying physics is that
the superposition of zero momentum states on the circle
completely cancels the positive Hartree-Fock energy. This
is consistent with the result obtained from a different
approach of renormalizing the interaction, which found
that the renormalized interaction between two particles
with zero momentum on the circle is reduced to zero
[23,24].

The above discussion can be directly generalized to an
N-body system. For systems with an even particle number,
a single-particle condensate |CV ]>¢, = I::;,Nlo)/ JN! and a

fragmented condensate |F' [N])d, = LALN / 21:;2]1/3 [0)/(N/2)!

minimize Eng] for y > 1 and y <1, respectively, where
¢ is an arbitrary phase reflecting the rotation symmetry in
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the momentum space. For an odd particle number N =
2n+1(n=172,...), the fragmented condensate is sim-

[2n+1]> = LT"LLTﬁH()}/,/n!(n + 1)!. Any

other Fock state in L costs additional Hartree-Fock energy
proportional to the total particle number, as shown in
Fig. 1. Therefore, all bosons condense at one or two

ply given by |F

momentum states to minimize EEVF] distinct from noninter-
acting systems where bosons can distribute on the circle
|k | | = ky arbitrarily.

Among all the above states that minimize Hartree-Fork
energy, |CtVM)), or |FI2"*1)), with different values of ¢
cannot be mixed with each other, due to the constraint of
total momentum conservation. However, such a constraint
is absent for |F [2"])¢, as all of them have zero total mo-
mentum and any two of them are inevitably coupled by a
series of scattering, as demonstrated in Fig. 1. This type of
tunneling is known to be crucial in the presence of degen-
erate ground states, and produces macroscopic or meso-
scopic quantum coherence in various systems [25-28]. In
our case, it fundamentally changes the ground state struc-
ture when fragmentation occurs with an even particle
number.

We derive an effective Hamiltonian in the subspace
composed of all fragmented condensates (see the
Supplemental Material [29]),

H3 = [T asefIolo

+ [0 ddd'V 5, 401,04(1= 8440,  (10)

where OJr = LT"L on/n! is the creation operator for a
fragmented condensate and

- (g + g9~y
(81 + 8 +g1)"!

The diagonal term 2" = E211 — &1 where E2Y s the
Hartree-Fock energy and &' is the diagonal part of the
correction to the energy due to the coupling between
IF[Z”]>¢, and high energy states (see the Supplemental
Material [29]). As £ is independent of ¢, it does not affect
the structure of the ground state wave function.

Vo =(-1 (1)

Similarly to H!?! discussed above, Hgf"] is also analyti-
cally solvable (see the Supplemental Material [29]). For
the simplest case with g; = 0, with an “infinite-range”
constant tunneling ¢ = (—1)""'g2n?/(g, + g12)" ' [22],
the eigenstates can be written as

n 1 T . N
IsFe = = [Tagem0li0, (2

where v is an integer, with the corresponding eigenenergy

2
ERr) = g2l 4 (-1 83"
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1). (13)

As the reduced single-particle density matrix (I:;@I: ') of

|SF [2”]> is zero, and the reduced 2n-particle density matrix

<LJ”’L2;"+ 7Tsz'b,lA," '+ has a unique macroscopic eigenvalue

(n'/m)?, |SF[V2”]> is a superfragmented state [27]. The
superfragmented state we find here has two exotic features
that are absent in previous studies [25-28]. First, it is

[N]
E:HF
High energy states
o}
|
................................. . ——
Fa =06g(N —1)/2 [
I
cM), ™My g1 IR, [P

= g12/(91 + 92)

FIG. 1 (color online).

Hartree-Fock energy EﬁvF] of N particles. Red circles represent the kinetic energy minimum, and blue ellipses

represent a large number of bosons occupying the same momentum state. Blue and white dots represent a single boson and a hole in the
condensate, respectively. The single-particle and fragmented condensate minimize EE\Q for y <1 and vy > 1. They are separated from
high energy states by an energy gap E; = g + N8g/2 or E; = g(N/2 — 1), where g = (g, + g, + g1») and 8g = g, + g» — g12-
Any two fragmented condensates with even particle numbers N = 2n are coupled through a sequence of tunneling induced by »n steps

of scattering, as shown by the green arrows.
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composed of an infinite number of macroscopically occu-
pied states other than just a few. Second, each of them is
characterized by a winding number v. In other words,
bosons first form a fragmented condensate and then the
condensate “‘rotates” in the momentum space acquiring a
complex phase in the superposition. We note that both
features originate from the intriguing interplay between
Rashba SOC and interaction, which gives rise to an
angular-dependent effective interaction as shown in
Eq. (6). We have verified the superfragmented state as
the ground state for a four-body problem using numerical
simulations.

It is known that the superfragmented state is fragile in
systems with large numbers of particles. In our case,
Eq. (13) shows that the energy difference between the
superfragmented state and the fragmented condensate can

be characterized by n = 1 — EZ"/£2" For a small total
particle number N = 2n, 7 takes a large value. For ex-
ample, one estimates that n = 0.61, 0.11, 0.1 for N = 4, 6,
8,and g,/g1» = 0.9, which means a large energy is gained
by forming a superfragmented state. While this fact strik-
ingly changes the properties of a few-body system, one
notes that 1 decreases exponentially with increasing par-
ticle number N = 2n, ie., n~ (1 + ’2—‘;)”’“. This is a
typical feature of a high order process that requires mul-
tiple steps of two-body scattering to couple two degenerate
states. When N — oo, 7 vanishes, which means a frag-
mented condensate becomes degenerate with the exact
many-body ground state in the thermodynamic limit. In
current experiments, N ~ 10°-10°, one can easily see that
7 is a negligible number.

The tiny 5 for a large value of N indicates that a big
superfragmented state is unstable against external pertur-
bation. For our discussions, the anisotropy of SOC, which
always exists in practice, is naturally such a perturbation.
Assuming A, > Ay, Eq. (3) shows that Kinetic energy
minimums are located at two separate points k = *k,, =
+*MA,/h?*. We define the circle |k ;| =k, as L/, on
which the expression for interaction energy is identical to
that in Eq. (10), with ¢ replaced by ¢ = arg{Ak,, A k,}
[19]. The kinetic energy in L' is now a function of ¢,

h2
k

K(§) = 52:K kohy1 — a2 — a)sin’g,  (14)

where @ = (A, — A,)/A, characterizes the anisotropy of
SOC, and leads to an offset of kinetic energy A(a) =
(K(7/2) — K(0))N = aNMA2/h? in L.

For single-particle condensates and fragmented conden-
sates with odd particle numbers, any infinitesimal « picks
up [C¥) 4 or [FIM) 4 as the ground state, which favors
the kinetic energy with no cost of interaction energy.
For superfragmented states, we define a characteristic
anisotropy

a

. n 8 \!

2MX3 (82 + 812) s2 (15
by setting the kinetic energy offset equal to the strength
of off-diagonal coupling induced by interaction, i.e.,
A(a*) = t. For small anisotropy @ < a”, the interaction
energy is dominant and a superfragmented state forms.
For a > «a, forming a superposition of fragmented
condensates costs too much kinetic energy, and a single
fragmented condensate |F [N]>¢:0 becomes the ground
state. A more quantitative analysis is given in the
Supplemental Material [29]. Using Eq. (15), one estimates
that o = 9%, 4%, 2% for N = 4, 6, 8, g,/g,» = 0.9 and
gonh?/(2MA2) = 0.2. This means a small superfrag-
mented state is stable in a finite range of anisotropy.
With increasing N, a* decreases exponentially. One can
verify that for N ~ 10°-10°, the typical particle number in
current experiments, «* is essentially zero. Therefore, one
concludes that a superfragmented state collapses to a frag-
mented condensate. An additional external potential that
breaks the translation invariance will further change the
fragmented condensate to a stripe condensate (see the
Supplemental Material [29]).

Whereas we have answered fundamental questions
about whether, when, and why a condensate exists in the
presence of SOC, our work also demonstrates that the
coupling between Hartree-Fock energy minimums
becomes particularly important in a spin-orbit coupled
few-body system. Evidence for this type of coupling has
been found in a recent numerical calculation [30]. Provided
that significant progress is made on manipulating a few
atoms in current experiments [31,32] as well as in produc-
ing a uniform trap [33], we hope that our work will
stimulate more studies on SOC induced novel ground
states of mesoscopic cold atomic systems.
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