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We study a relativistic OðNÞ model near the quantum critical point in 2þ 1 dimensions for N ¼ 2 and

N ¼ 3. The scalar susceptibility is evaluated by Monte Carlo simulation. We show that the spectrum

contains a well-defined peak associated with the Higgs mode arbitrarily close to the critical point. The

peak fidelity and the amplitude ratio between the critical energy scales on both sides of the transition are

determined.
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Spontaneously broken continuous symmetry in con-
densed matter produces collective modes. In addition to
Goldstone modes, an amplitude (Higgs) mode is some-
times expected at finite energy [1,2]. Higgs oscillations
have been measured in, e.g., the superconductor NbSe2,
[1,3,4], the dimerized antiferromagnet TlCuCl3 [5], and
charge density wave compounds [6–8].

In the absence of gauge fields, the massive Higgs mode
decays into massless Goldstone modes, broadening its
spectral line. For relativistic OðNÞ models in 3þ 1 dimen-
sions, the Higgs mode becomes an increasingly sharper
excitation the closer one gets to the quantum critical point
(QCP) [9]. This is a consequence of the fact that the QCP
itself is a Gaussian fixed point. In contrast, in 2+1 dimen-
sions (d ¼ 2) the QCP is strongly coupled [10], and there is
no a priori reason to expect the Higgs mode to survive near
criticality.

Recent interest in the fate of the Higgs mode in 2þ 1
dimensions has led to new theoretical and experimental
results. The visibility of the Higgs peak has been shown to
be sensitive to the symmetry of the probe [11,12]: The
longitudinal susceptibility diverges at low frequencies as
!�1 [13–15]. This is due to the direct excitation of
Goldstone modes which can completely conceal the
Higgs peak. In contrast, the scalar susceptibility [12] rises
as !3 and its Higgs peak is much more visible, even at
stronger coupling.

Indeed, in recent experiments of cold bosons in an
optical lattice [16], the Higgs mode has been detected in
the scalar response, in the vicinity of the superfluid to Mott
insulator transition. Further large N analysis [17] and
numerical simulations of the Bose Hubbard model [18]
(N ¼ 2) have suggested that the Higgs peak is still visible
as it softens toward the QCP. However, the ultimate fate of
this peak in the critical region demands simulations on
much larger systems.

The question to be answered is whether the Higgs mode
is well-defined arbitrarily close to criticality, in the sense
that one can identify a peak in the scalar susceptibility even
as its energy scale decreases to zero.

In this Letter, we answer this question in the affirmative.
We compute the frequency dependent scalar susceptibility
for the relativistic Oð2Þ and Oð3Þ models. Lorentz invari-
ance enables us to simulate large lattices and reach the
close vicinity of the quantum critical point.
Our key result is that in the broken symmetry phase, the

scalar susceptibility collapses onto a universal line shape.
Its low frequency rise and its peak scale together with
the vanishing Higgs mass mH, which is plotted in Fig. 1.
The implication of our calculations is that the Higgs mode
remains a well-defined collective mode all the way to the
critical point.
We also determine the amplitude ratios of the Higgs

mass (in the ordered phase) to the gap � (in the quantum
disordered phase) for the Oð2Þ and Oð3Þ models, as
mH=� ¼ 2:1ð3Þ and mH=� ¼ 2:2ð3Þ, respectively. These
ratios are universal quantities that can be directly
compared with experiment. Their value differs from the

FIG. 1 (color online). Critical energy scales near the quantum
phase transition in relativistic OðNÞ field theory for N ¼ 2, 3.
�g � ðg� gcÞ=gc is the dimensionless tuning parameter. mH is
the Higgs peak energy (mass) in the ordered phase �g < 0, and
� is the gap in the disordered phase �g > 0. Solid lines describe
the critical behaviormH ¼ B�j�gj�N and � ¼ Bþj�gj�N . Inset:
Phase diagram in the microscopic g, � parameter space [defined
in Eq. (1) for N ¼ 2]. Two choices of �, denoted by (a) and (b),
were studied in this Letter.
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mean-field result mH=� ¼ ffiffiffi
2

p
, which describes quantum

critical points in d ¼ 3 for all values of N [19].
Model.—We consider an OðNÞ symmetric lattice model,

with partition function Z ¼ R
D ~�e�SE , where

SE ¼ 1

g

�
�X

hi;ji
~�i � ~�j ��

X
i

j ~�ij2 þ
X
i

ðj ~�ij2Þ2
�
: (1)

Here, ~�i is a N component real field residing on sites
i ¼ ðx; y; �Þ of a cubic lattice in discrete Euclidean
space-time. The model undergoes a quantum phase tran-
sition at g ¼ gcð�Þ. See inset of Fig. 1. At weak coupling
�g ¼ ðg� gcÞ=gc < 0, there is long-range order, and the
fluctuations include N � 1 gapless Goldstone modes trans-

verse to the broken symmetry direction h ~�i. At strong
coupling �g > 0, there is a disordered phase with a gap
� to all excitations. Near the QCP, the long wavelength
properties of this model are captured by an OðNÞ symmet-
ric relativistic �4 field theory in 2þ 1 dimensions [19].
For N ¼ 2, the ordered and disordered phases describe the
superfluid and Mott insulator of lattice bosons at commen-
surate filling, respectively [20]. For N ¼ 3, they describe
the Néel ordered and the gapped singlet phase, respectively
[19,21,22].

Our main focus is the zero-momentum scalar correlation
function in imaginary time,

�sð�Þ ¼ 1

L2

X
x;y

ðhj ~�ðx;y;�Þj2j ~�0j2i � hj ~�0j2i2Þ; (2)

~� sði!mÞ ¼ 1

L

X
�

e�i!m��sð�Þ; (3)

and the real frequency dynamical susceptibility, given by

�sð!Þ ¼ ~�sði!m ! !þ i0þÞ: (4)

Scaling arguments indicate that, near gc, the suscepti-
bility at small frequencies is of the form [17]

�sð!Þ � CþA��3�2=���ð!=�Þ: (5)

Here, ��Bþj�gj� is the gap in the disordered phase, � is
the correlation length critical exponent, and �� (�þ) is a
universal function of !=� in the ordered (disordered) side
of the transition. The constant C is real and is a regular
function of g across the transition. The presence of
Goldstone modes renders the ordered phase gapless. In
order to provide a well-defined energy scale that character-
izes fluctuations on the ordered phase �g < 0, we use the
gap at the mirror point��g across the transition. Our goal
is to compute the universal scaling functions �� and to
extract a set of universal parameters that can be compared
with experiment.

Methods.—The partition function in Eq. (1) is reformu-
lated as a dual loop model, for the cases of N ¼ 2 and
N ¼ 3 [23]. The sum is sampled by a Monte Carlo

algorithm, using the efficient ‘‘worm algorithm [24].’’ An
enhanced performance is achieved by cluster loop updates
[25]. The simulations were performed on cubic L� L� L
lattices of size up to L ¼ 200. This allowed us to approach
within the neighborhood of �g � 0:39� 10�2 of the QCP.
Our first task was to determine, for each set of parame-

ters, the critical point gc. To this end, we evaluated the
helicity modulus �s, as measured by the second moment of
the winding number in periodic boundary conditions
[24,26]. At gc, limL!1L�sðgcÞ approaches a universal
value. gc is then accurately determined from the crossing
point of L�s for a sequence of L values [25].
The correlation length exponent � is known from pre-

vious large scale simulations [27,28]: �2 ¼ 0:6723ð3Þ and
�3 ¼ 0:710ð2Þ for N ¼ 2 and N ¼ 3, respectively.
For N ¼ 2, we study two sets of parameters �1 ¼ 0:5,

for which gc ¼ 2:568ð2Þ, and �2 ¼ 2, for which gc ¼
3:908ð2Þ, see inset of Fig. 1. Thus, the first set of parame-
ters describes a ‘‘softer’’ spin model than the second. For
N ¼ 3, we use � ¼ 0:5, for which gc ¼ 1:912ð2Þ.
Results.—We first extract the gap � in the disordered

phase at �g > 0. There, the imaginary part of the scalar
susceptibility has a threshold at 2� of the form [17],

�00þð!=�Þ � g�ð!=�Þ�ð!� 2�Þ; (6)

where g�ðxÞ ¼ 	=ðln2 x�2
4� þ 	2Þ has a weak logarithmic

singularity and � is a universal constant which equals one
in the N ¼ 1 limit.
The Laplace transform of Eq. (5) yields the asymptotics

of large � as

�sð�Þ �Aþ~g�ð��Þ�4�2=� e
�2��

��
; (7)

where ~g�ð��Þ is the Laplace transform of g�ð!=�Þ. In
order to obtain �, we fit the simulation results for �sð�Þ to
Eq. (7). The fit is dominated by the exponentially decaying
factor and is insensitive to the parameter �. The critical
behavior of the gap near the QCP agrees with the form� ¼
Bþð�gÞ�, as shown in Fig. 1. From this procedure, we
extract the values of Aþ and Bþ. As a check, we also
obtained � from the large � decay of the single-particle
Green’s function Gðk ¼ 0; �Þ [29] and found agreement
with these results.
The scaling form of Eq. (5) applies also to Matsubara

frequency correlations ~�sði!mÞ. Figure 2(a) shows the
N ¼ 2 scalar susceptibility ~�sði!mÞ as a function of
Matsubara frequency. The data collapse into two curves

corresponding to ~��ði!m=�Þ on both sides of the transi-
tion. Collapsing the curves is done by rescaling the
Matsubara frequencies by �ð�gÞ, fitting the overall con-
stant shift as a polynomial of �g, and then rescaling by

Aþ�3�2=�. The black curves in Fig. 2(b) are the rescaled
functions, which shows good convergence of the numerical
data in the critical regime. Similar results were obtained for
N ¼ 3 and will be presented elsewhere [23].
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The universality of ~�� is tested in Fig. 2(b). The col-
lapsed functions match closely, especially at small
Matsubara frequencies. We use the values of Aþ and
Bþ extracted in an earlier step, without free fitting parame-
ters. This provides a stringent test for the universality of the
scaling function.

Analytic continuation.—In order to perform the analytic
continuation of the numerical data and determine the spec-
tral function�00

s ð!Þ ¼ Im�sð!Þ, we must invert the relation

~� sði!mÞ ¼ 1

	

Z 1

0
d!�00

s ð!Þ 2!

!2
m þ!2

: (8)

Unfortunately, the kernel of this integral equation is ill
posed, which renders the inversion sensitive to inevitable
numerical noise in ~�sði!mÞ. To tackle the problem, we
employ the MaxEnt Method [30]. In this method, the inver-
sion kernel is regularized by introducing an ‘‘entropy’’
functional which is extremized along with the goodness of
fit. To ensure the validity of the results, we track the
convergence of the MaxEnt spectrum as the statistical
error decrease for long Monte Carlo simulations, see
Supplemental Material [31].

Figure 3 presents the spectral function �00
s ð!Þ in the

ordered phase for N ¼ 2 and N ¼ 3. The spectral function
displays a narrow low energy peak, which softens upon
approach to the critical point, and broad high energy
spectral weight, which does not. This structure is in agree-
ment with the findings of Ref. [18]. The positionmH of the
low energy peak as a function of �g is shown in Fig. 1. We
find an excellent agreement with the expected scaling for
the Higgs modemH ¼ B�j�gj� presented in the red curve.
From this fit, we extract B�. From the ratio Bþ=B�, we
extract the universal ratio of the energy scales mH=� on
both sides of the transition.

The N ¼ 2 results shown in Fig. 3 range from j�gj ¼
0:0039 to j�gj ¼ 0:12, corresponding to almost a decade
and a half variation. For the smallest value of �g, the
correlation length 
 at the mirror point in the disordered
phase is 22.2 lattice sites. This value satisfies 1 � 
 � L,
indicating that we are both in the continuum limit and in
the thermodynamic limit. For N ¼ 3, we observe scaling
for a more narrow range of j�gj, between 0.02 to 0.084. In
this case, we find that approaching the critical point
requires very large system sizes and long simulation times.
We will investigate smaller values of �g for N ¼ 3 in a
future study. For all cases presented here, we explicitly
checked that our results do not change upon increasing L.
Not only does the peak position in Fig. 3 scale, but the

full low energy functional form does, as shown in Fig. 4
both for N ¼ 2 and N ¼ 3. There, we rescale the fre-

quency axis by � and the spectral function by �3�2=� to

FIG. 2 (color online). (a) The scalar susceptibility as a function
of Matsubara frequency for N ¼ 2 and � ¼ 0:5. Lower curves,
different �g > 0 (disordered phase). Upper curves, �g < 0
(ordered phase) (b) Collapse of the same susceptibility onto
scaling functions ~��. Results include two values of � (see inset
of Fig. 1).

FIG. 3 (color online). Scalar susceptibility �00
s ð!Þ (blue

online), in arbitrary units, for different values of �g < 0 at
� ¼ 0:5. Curves shifted vertically by �g. The Higgs energy
mH as a function of �g is extracted from the peak positions
(dots) as the solid curve (red online).

FIG. 4. Rescaled spectral function vs !=� for N ¼ 2, 3, at
� ¼ 0:5. At low values of !=�, these curves collapse to the
universal scaling function�00�ð!=�Þ, in accordance with Eq. (5).
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match the predicted scaling form of Eq. (5). Note that the
rescaling is done without any free fitting parameters since
the real constant in Eq. (5) drops out from the spectral
function. The observed functional scaling demonstrates
that the Higgs peak is a universal feature in the spectral
function that survives as a well-defined excitation arbi-
trarily close to the critical point.

The peak position in units of � is shifted to higher
energies for theN ¼ 3 case compared toN ¼ 2. This trend
agrees with the prediction made in Ref. [17] that mH=�
increases monotonically withN. We also obtain the fidelity
F ¼ mH=�, where � is the full width at half-maximum.
We measure � with respect to the leading edge at low
frequency, since at low frequencies there is less contami-
nation from the high frequency nonuniversal spectral
weight. Since the entire functional form of the line shape
is universal, F is a universal constant that characterizes the
shape of the peak. We find F ¼ 2:4ð10Þ for N ¼ 2 and
F ¼ 2:2ð10Þ for N ¼ 3.

The rescaled spectral function in Fig. 4 shows higher
variability at high frequencies than at low frequencies. We
attribute this to contamination from the nonuniversal part
of the spectrum and to systematic errors introduced from
the MaxEnt analysis, which is less reliable in this regime.

In the ordered phase, the asymptotic low frequency rise
of the susceptibility was predicted [12,13,17] to be

�00� � ð!=�Þ3; ! � � � 1: (9)

The !3 rise is due to the decay of a Higgs mode into a pair
of Goldstone modes. On the other hand, Fig. 4 does not
display a clear !3 low frequency tail. An alternative
method to look for this tail exists, without the need to
analytically continue the numerical data to real time.
Equation (9) transforms into the large imaginary time
asymptotics �sð�Þ � 1=�4.

For N ¼ 3, we indeed find the asymptotic behavior
�sð�Þ � 1=�4. Interestingly, for N ¼ 2, we do not find a
conclusive asymptotic falloff as 1=�4, Instead, the data fit
better to an exponential decay, as in the disordered phase
[see Eq. (7)]. We find excellent agreement between the
extracted decay rate and the value of mH obtained from
the MaxEnt analysis, further validating our results for the
Higgs mass. We note that the power law behavior might be
regained for larger values of � below our statistical errors.
In both cases, we can safely conclude that the spectral
weight of the Higgs peak dominates over the low frequency
!3 tail, enhancing its visibility. The large � analysis is
discussed elsewhere [23].

Discussion and summary.—Our results are directly ap-
plicable to all experimental probes that couple to a function
of the order parameter magnitude, for example, the lattice
potential amplitude in the trapped bosons system [16,18] or
pump-probe spectroscopy in charge density wave systems
[6–8]. Such a probe can be expanded near criticality in
terms of the order parameter fields and their derivatives,

�ðx; �Þ ¼ �j ~�j2 þ �j@� ~�j2 þ �ðj ~�j2Þ2 þ . . . (10)

So long as � � 0, the first term is more relevant than the
rest. Hence, the scalar susceptibility defined in Eq. (2)
dominates the experimental response at low frequencies
and wave vectors.
In summary, we have calculated the scalar susceptibility

for relativistic Oð2Þ and Oð3Þ models in 2þ 1 dimensions
near criticality. We have demonstrated that the Higgs mode
appears as a universal spectral feature surviving all the way
to the quantum critical point. Since this is a strongly
coupled fixed point, the existence of a well-defined mode
that is not protected by symmetry is an interesting, not
obvious, result. We presented new universal quantities to
be compared with experimental results.
During the submission of this Letter, we became aware

of a similar analysis [32] on the Bose-Hubbard model.
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Mutka, and M. Boehm, Phys. Rev. Lett. 100, 205701
(2008).

[6] Y. Ren, Z. Xu, and G. Lupke, J. Chem. Phys. 120, 4755
(2004).

[7] J. P. Pouget, B. Hennion, C. Escribe-Filippini, and M.
Sato, Phys. Rev. B 43, 8421 (1991).

[8] R. Yusupov, T. Mertelj, V. V. Kabanov, S. Brazovskii, P.
Kusar, J.-H. Chu, I. R. Fisher, and D. Mihailovic, Nat.
Phys. 6, 681 (2010).

[9] I. Affleck and G. F. Wellman, Phys. Rev. B 46, 8934
(1992).

[10] K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240
(1972).

[11] N. H. Lindner and A. Auerbach, Phys. Rev. B 81, 054512
(2010).

[12] D. Podolsky, A. Auerbach, and D. P. Arovas, Phys. Rev. B
84, 174522 (2011).

[13] S. Sachdev, Phys. Rev. B 59, 14 054 (1999).
[14] W. Zwerger, Phys. Rev. Lett. 92, 027203 (2004).

PRL 110, 140401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

140401-4

http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1103/PhysRevB.75.085106
http://dx.doi.org/10.1103/PhysRevLett.45.660
http://dx.doi.org/10.1103/PhysRevLett.45.660
http://dx.doi.org/10.1103/PhysRevB.26.4883
http://dx.doi.org/10.1103/PhysRevB.26.4883
http://dx.doi.org/10.1103/PhysRevLett.100.205701
http://dx.doi.org/10.1103/PhysRevLett.100.205701
http://dx.doi.org/10.1063/1.1645785
http://dx.doi.org/10.1063/1.1645785
http://dx.doi.org/10.1103/PhysRevB.43.8421
http://dx.doi.org/10.1038/nphys1738
http://dx.doi.org/10.1038/nphys1738
http://dx.doi.org/10.1103/PhysRevB.46.8934
http://dx.doi.org/10.1103/PhysRevB.46.8934
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevB.81.054512
http://dx.doi.org/10.1103/PhysRevB.81.054512
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1103/PhysRevB.59.14054
http://dx.doi.org/10.1103/PhysRevLett.92.027203


[15] N. Dupuis, Phys. Rev. A 80, 043627 (2009).
[16] M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P.

Schau�, C. Gross, E. Demler, S. Kuhr, and I. Bloch,
Nature (London) 487, 454 (2012).

[17] D. Podolsky and S. Sachdev, Phys. Rev. B 86, 054508
(2012).

[18] L. Pollet and N. Prokof’ev, Phys. Rev. Lett. 109, 010401
(2012).

[19] S. Sachdev, Quantum Phase Transitions (Cambridge
University Press, New York, 2011), 2nd ed.

[20] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Phys. Rev. B 40, 546 (1989).

[21] F. D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[22] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys.

Rev. B 39, 2344 (1989).
[23] S. Gazit, D. Podolsky, and A. Auerbach (unpublished).

[24] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87,
160601 (2001).

[25] F. Alet and E. S. Sørensen, Phys. Rev. E 67, 015701
(2003).

[26] L. Wang, K. S. D. Beach, and A.W. Sandvik, Phys. Rev. B
73, 014431 (2006).

[27] M. Hasenbusch and T. Török, J. Phys. A 32, 6361 (1999).
[28] M. Hasenbusch, J. Phys. A 34, 8221 (2001).
[29] B. Capogrosso-Sansone, Ş. G. Söyler, N. Prokof’ev, and
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