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We demonstrate the Casimir interaction between two ferromagnetic boundary surfaces using the

dynamic atomic force microscope. The experimental data are found to be in excellent agreement with

the predictions of the Lifshitz theory for magnetic boundary surfaces combined with the plasma model

approach. It is shown that for magnetic materials the role of hypothetical patch potentials is opposite to

that required for reconciliation of the data with the Drude model.
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The Casimir effect [1] is of much interest due to its
promising multidisciplinary applications in nanotech-
nology, condensed matter physics, physics of elementary
particles, and in gravitation and cosmology [2,3]. Many
experiments on measuring the Casimir force between
boundary surfaces made of different materials separated
by a vacuum gap or a liquid have been performed in the
last 15 years [4–6]. It was shown that the magnitude of
the Casimir force can be controlled by using different
boundary materials [7,8], phase transitions [9–13], and by
using the boundary surfaces structured with nanoscale
corrugations [14–17].

A unified description of both the van der Waals and
Casimir forces is given by the Lifshitz theory [18] in terms
of the dielectric permittivity "ð!Þ and magnetic perme-
ability�ð!Þ. The role of magnetic materials in the Casimir
force has been studied theoretically [19–30]. The interest
stems from the possibility to obtain a repulsive Casimir
force for application in micromachines. Using real mag-
netic materials [21,25] did not validate the early results
which used constant " and�. As�ði�Þ can be large only at
� < 105 � 109 Hz, its entire contribution to the Lifshitz
formula is through the zero Matsubara frequency [27,28].
For metals, the zero-frequency term is strongly influenced
by the inclusion (Drude model approach) or neglect
(plasma model approach) of the relaxation properties of
free electrons [4]. Thus using � provides another parame-
ter to study the role of the relaxation properties of free
electrons in the Casimir effect. Some experiments demon-
strate strong disagreement between the measured data and
theoretical predictions when the relaxation properties
of electrons are taken into account for metals [4,31,32]
or the dc conductivity is included for dielectrics [4,12,13].
The same data are found to be consistent with theory
when the relaxation properties are neglected for metals or
the dc conductivity of dielectrics is disregarded. Two other
experiments [33,34] are claimed to be in favor of the Drude
model approach (see critical discussion in Refs. [35–38]).
It was also hypothesized [39] that the effect of large

patches might bring the experimental data of Ref. [31] in
agreement with the predictions of the Drude model
approach (see also discussion in Ref. [32]).
In this Letter we describe the demonstration of the

Casimir force between surfaces of a plate and a sphere,
both coated with ferromagnetic metal Ni, performed by
means of a dynamic atomic force microscope (AFM) using
the frequency shift technique. The Lifshitz theory was
generalized for the case of magnetic bodies in Ref. [19],
but until now was not unequivocally verified experimen-
tally. Note that measurements of the Casimir interaction
between an Au-coated sphere and a Ni-coated plate [40]
confirmed the influence of magnetic properties on the
Casimir force under an assumption that the plasma model
approach is adequate (for Au interacting with Ni the Drude
model approach is not sensitive to magnetic properties
and leads to almost the same results as the plasma model
approach [40]). The advantage of the Ni-Ni test bodies
used here is that the magnetic properties significantly
affect the Casimir force when both the plasma and Drude
model approaches are used leading to considerably differ-
ent results [27]. Using this property, we have unequivocally
confirmed that the magnetic properties influence the
Casimir force in accordance with predictions of the
Lifshitz theory. The agreement is excellent with the plasma
model approach, and the Drude model approach is
excluded by our data at a 95% confidence level. We have
also excluded any possible role of patch effects on the
conclusions obtained. This opens opportunities for far-
ranging applications of the magnetic Casimir effect in
nanotechnology including the realization of the Casimir
repulsion through a vacuum gap [26–28,30].
Here we have used the same apparatus and cantilever

preparation as in Refs. [32,40]. The gradient of the Casimir
force was measured acting between a Ni-coated hollow
glass microsphere of R ¼ 61:71� 0:09 �m radius
attached to the tip of a rectangular Si cantilever and a Si
plate also coated with Ni. The thicknesses of the Ni coat-
ings were 210� 1 nm and 250� 1 nm on a sphere and a
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plate, respectively. The hollow sphere leads to higher
resonant frequencies and mechanical Q factors offering
higher sensitivities. To promote adhesion of the Ni coating,
a 10 nm layer of Cr followed by 40 nm layer of Al was
done first. The coatings were performed at 10�6 Torr. To
achieve uniformity of Ni layers, the sample was rotated

during evaporation of the metals. A coating rate � 3 �A=s
was used. Both test bodies were cleaned using a multistep
procedure to remove any attached adsorbates (both neutral
and with net charge) and debris (see Ref. [32] for details).
The cantilever was clamped in a specially fabricated holder
and placed inside the vacuum chamber that was capable of
reaching a pressure of 10�9Torr by using mechanical,
turbo and ion pumps. The Ni-coated plate was fixed on
the top of the piezo with double sided vacuum adhesive
tape. The movement of the piezo was calibrated by a fiber
interferometer with 635:0� 0:3 nm laser source.

The dynamic measurement scheme in the frequency
modulation mode, as in Refs. [32,40,41], was used. The
directly measured quantity was the change of resonant
frequency of the periodically driven cantilever which was
detected by a phase locked loop system [42,43] (see details
for our setup in Refs. [32,40]). The driving frequency was
kept near the resonance frequency of the cantilever to
obtain the highest signal to noise ratio. The resonance
frequency was detected with an optical interferometer
[43,44]. To keep the interferometric cavity length between
the top of the cantilever and the end of the fiber fixed,
we used a piezo above the cantilever, which was controlled
by a proportional-integral-derivative feedback loop. This
prevents errors in the sphere-plate separation distance a
due to cantilever deflection from Casimir, FðaÞ, and elec-
trostatic, FelðaÞ, forces.

For small oscillations in the presence of an external
force FtotðaÞ ¼ FelðaÞ þ FðaÞ, the measured frequency
shift �! ¼ !r �!0 is expressed [32,40] as �! ¼
�ð!0=2kÞF0

totðaÞ. Here, !r is the resonance frequency in
the presence of Ftot, !0 is the natural resonance frequency,
k is the spring constant of the cantilever, and a¼ zpiezoþz0
(zpiezo is the plate movement due to the piezoelectric

actuator which is calibrated interferometrically and z0 is
the point of the closest approach between the two surfaces,
which in our case is much larger than the separation on
contact). The electric force can be expressed as FelðaÞ ¼
Xða; RÞðVi � V0Þ2, where Xða; RÞ is the known function
[3,4,32], Vi are the voltages applied to the plate, and V0 is
the residual potential difference. In terms of the measured
parameters, �! takes the form

�! ¼ ��ðVi � V0Þ2 � CF0ðaÞ; (1)

where C ¼ !0=ð2kÞ and � � �ðzpiezo; z0; C; RÞ ¼
CX0ða; RÞ.

A sufficiently precise electrostatic calibration, i.e.,
determination of V0, z0, C, and � from measurements of
electric forces, is possible because we use a large perfectly
shaped sphere made from the liquid phase. The theoretical

electric force in the sphere-plane geometry is known
exactly and the potential between a sphere and a plane
can be precisely determined. For electrostatic calibrations
and measurements of �!, 11 different voltages in the
range from�64:5 to 31.6 mV were applied to the Ni plate,
while the sphere remained grounded. The plate was moved
toward the sphere starting at the maximum separation of
2:3 �m and the corresponding �! was recorded at every
0.14 nm. Continuous triangular voltages at 0.01 Hz were
applied to the tube piezo to move the plate toward the
sphere. This set of measurements was repeated three times.
The small mechanical drift 0:003 nm=s in the zpiezo was

corrected as described in Refs. [32,40]. The parabolic
dependence of �! on Vi was used to find V0 at each
separation [13]. Note that V0 is separation independent
indicating the lack of any adverse surface contaminants
and the high quality of the measured data (see Fig. 1 where
the best fit of V0 to the straight line leads to a slope equal
to only 1:5� 10�5 mV=nm). The mean value of V0 ¼
�17:7� 1 mV was found. The values of z0 and C were
found by a least �2 fitting of � in Eq. (1). The mean values
are z0 ¼ 221:1� 0:4 nm and C ¼ 52:4� 0:16 kHzm=N
(the errors are indicated at a 67% confidence level).
Then we obtain �¼ð��0CR=a2Þð1�2c1a

2=R2�4c2a
3=

R3þ . . .Þ, where c1 and c2 are given in Ref. [3] and �0 is the
permittivity of vacuum. The absence of calibration errors
in the obtained values of z0 and C was confirmed by their
independence of the separation region used in calibration
[32,40]. After the values of z0 and C were found, the
measured �! was converted into F0

totðaÞ and the absolute
separation distances were determined.
Now the 33 values of F0ðaÞ at each a can be obtained

from Eq. (1) by subtracting the contribution of F0
elðaÞ.

They are shown in Fig. 2 at a from 223 to 320 nm with a
step of 2 nm. The statistical properties of the data are
characterized by the histogram shown in an inset to
Fig. 2 at a ¼ 250 nm. It is described by Gaussian distri-
bution with the standard deviation �F0 ¼ 0:92 �N=m and
mean F0 ¼ 74:17 �N=m. The mean values of F0ðaÞ as a
function of a (with a step of 1 nm) are shown as crosses in
Figs. 3(a)–3(d) where the arms of the crosses indicate the
total experimental errors found at a 67% confidence level.

5

FIG. 1. The residual potential difference between a Ni-coated
sphere and a Ni-coated plate as a function of separation. The
mean value of V0 is shown by the gray line.
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The total errors are mostly determined by the systematic
errors which are caused by the errors in calibration. Thus,
the systematic errors in F0ðaÞ at a ¼ 223, 250, 300, and
350 nm are equal to 1.20, 1.05, 0.89, and 0:81 �N=m
(i.e., 1.1%, 1.4%, 2.4%, and 3.9% of the force gradient),
respectively. These are quite sufficient to discriminate
between different theoretical predictions (see below). The
random error is equal to only 0:18 �N=m and does not
depend on a.

The experimental data for F0ðaÞ were compared with
predictions of the Lifshitz theory. The Lifshitz formula for
magnetic materials [3,19–22] was adapted for sphere-plate
geometry using the proximity force approximation (this
leads to<a=R, i.e.,<0:36% error at the shortest separation
[45,46]) with the result

F0ðaÞ ¼ 2kBTR
X1

l¼0

0 Z 1

0
qlk?dk?

X

�

r2�
e2aql � r2�

: (2)

Here, kB is the Boltzmann constant, T ¼ 300 K is the
temperature at the laboratory, q2l ¼ k2? þ �2

l =c
2, and

�l ¼ 2�kBTl=@ with l ¼ 0; 1; 2; . . . are the Matsubara
frequencies. The prime multiplies the term with l ¼ 0
by 1=2 and the sum with respect to � implies a summa-
tion in the transverse electric (� ¼ TE) and transverse
magnetic (� ¼ TM) polarizations of the electromag-
netic field. The respective reflection coefficients are
given by

rTM ¼ "lql � kl
"lql þ kl

; rTE ¼ �lql � kl
�lql þ kl

; (3)

where k2l ¼k2?þ"l�l�
2
l =c

2, and "l�"ði�lÞ, �l � �ði�lÞ.
The permittivity "l was obtained from the optical data

[47] for the complex index of refraction of Ni using the
Kramers-Kronig relation. The data were extrapolated to
zero frequency either by means of the Drude or the plasma
models. The plasma frequency !p¼4:89eV and the re-

laxation parameter 	¼0:0436eV have been used [47,48].
At l ¼ 0 the magnetic properties of Ni were described by
the static magnetic permeability�0 ¼ 110. For all l � 1 at
T ¼ 300 K, �l ¼ 1 because �ð!Þ rapidly falls to unity
with increasing ! [27].
The theoretical force gradients F0ðaÞ were computed

using Eqs. (2) and (3). The obtained values were corrected
for the presence of surface roughness. The roughness
profiles were investigated using an AFM and the rms
roughness on the sphere and the plate was found to be

s ¼ 1:5 nm and 
p ¼ 1:4 nm, respectively. At separa-

tions a � 223 nm this allows the use of the multiplicative
approach [3,4,32,40]. The theoretical results are shown in
Figs. 2 and 3(a)–3(d) within different separation regions by
the black and gray bands (their widths are defined by the
errors in the optical data) for the Drude and plasma model
approaches, respectively. Note that at the separations con-
sidered the difference between the predictions of the Drude
and plasma models for F0 is approximately proportional to
a�3. As can be seen in Fig. 3, the Drude model approach is
excluded by the data at a 67% confidence level over the
region from 223 to 420 nm. The plasma model approach is
in excellent agreement with the data. In Fig. 4 we plot the
same data for F0, but with the total experimental errors
determined at a 95% confidence level over the region from
223 to 350 nm (in the inset the interval from 300 to 350 nm
is shown on an enlarged scale). The errors at the 95%
confidence level are obtained in a conservative way as
the doubled errors found at the 67% confidence level
[49]. As can be seen in Fig. 4, over the region from 223
to 350 nm the Drude model approach is excluded even at a
higher, 95%, confidence level. For a from 420 to 1000 nm
both the plasma and Drude model approaches are consis-
tent with the data. It should be noted, however, that at large
a the data are not informative with respect to the two
models. Thus, at a ¼ 400, 550, 750, and 1000 nm the total
relative experimental error is equal to 6%, 20%, 100%, and
321%, respectively, whereas the respective differences

FIG. 3. Comparison between the experimental data for F0
(crosses plotted at a 67% confidence level) and theory (black
and gray bands computed using the Drude and plasma model
approaches, respectively).

FIG. 2 (color online). Comparison between the nonaveraged
experimental data for F0 (gray dots) and theory (black and gray
bands computed using the Drude and plasma model approaches,
respectively). The inset shows the histogram for the measured F0
at a ¼ 250 nm. f is the fraction of 33 data points having the
values of F0 in the bin indicated by the respective vertical lines.
The corresponding Gaussian distribution is shown by the dashed
line. The black and gray vertical lines show the theoretical
predictions of the Drude and plasma model approaches.
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between the predictions of the Drude and plasma model
approaches are equal to 8.5%, 10%, 12%, and 14%.

We emphasize that according to the Lifshitz theory the
magnetic properties of Ni in a Ni-Ni system significantly
influence the gradient of the Casimir force in the frame-
work of both theoretical approaches (they increase F0 when
the Drude model approach is used and decrease it if the
plasma model approach is applied). Thus, our measure-
ments unequivocally demonstrate the influence of mag-
netic properties on the Casimir force as is predicted by
the Lifshitz theory combined with the plasma model
approach. Of even greater importance is the fact that for
two magnetic metals the Lifshitz theory predicts F0

D > F0
p

where the Drude and plasma model approaches are indi-
cated by the indices D and p (see Figs. 3 and 4 where the
black bands are above the gray). This is opposite to the case
of two nonmagnetic metals where F0

D < F0
p [31,32]. Thus,

the inclusion of the effect of the patches in the calculation
for two magnetic test bodies is in principle incapable of
bringing the data in agreement with the Drude model
approach because patches always lead to an additional
attractive force. This proves that surface patches do not
play any role in our experiments and confirms the model of
patches [50] which leads to a negligibly small effect [4].

In this experiment both interacting bodies are magnetic
and consist of many domains. Therefore it is necessary to
analyze possible contribution of magnetic forces into the
measurement results. This is done by considering two
parallel Ni films of Lx � Ly ¼ 0:9� 1:1 cm2 area and

applying the general formulation of the proximity force
approximation [3,51]. For films more than 150 nm thick-
ness the magnetization of each domain is perpendicular to
the film surfaces, i.e., has only the z component equal to
�Ms, where Ms ¼ 435 emu=cm3 [52–54]. The magneti-
zation of the first (1) and the second (2) films can be

described by a function of two variables Mð1;2Þ
z ðx; yÞ.

In order to obtain the pair of infinite films described by
the periodic functions, we perform the periodic continu-

ation of Mð1;2Þ
z ðx; yÞ as odd function with the periods 2Lx

and 2Ly and use the Fourier series

Mð1;2Þ
z ðx; yÞ ¼ X1

k¼0

X1

n¼0

Mð1;2Þ
kn sin

k�x

Lx

sin
n�y

Ly

: (4)

Here, Mð1;2Þ
00 � 0 if the spontaneous magnetization is

absent.
Next, using the standard formalism developed in

magnetic force microscopy [55,56], one can calculate the
magnetic field created by oneNi filmand themagnetic force
acting on the other film. Keeping in mind that the magnetic
force between a pair of domains belonging to different
films can be both attractive and repulsive, and that these
domains have different size and are randomly arranged, the
resulting magnetic force on a sphere is equal to zero under
the condition that the spontaneous magnetization of at least
one film is zero. This conclusion is obtained for a film of
infinitely large area. Our Ni film of Lx � Ly area contains

about 109 domains whose sizes are approximately equal to
the film thickness [52] to minimize the magnetic energy.
In this case a noncompensated gradient of the magnetic
force is estimated to be less than 10�2 �N=m, i.e., a factor
of 100 less than the experimental error.
To avoid the spontaneous magnetization of Ni films, we

made them sufficiently thick and screened the weak envi-
ronmental magnetic field in our setup. If, however, there is
some nonzero spontaneous magnetization of both films, the
resulting gradient of the magnetic force acting on a sphere,
although nonzero, is negligibly small. This is because the
magnetic field near the center of a large film does not
depend on z for z � Lx, Ly [57]. For example, even for

a fully magnetized film (which is not the case for our setup)
the gradient of the magnetic force acting on a sphere in
the region of experimental separations is much less than
2� 10�3 �N=m, i.e., much less than the experimental
error in the measurements of F0ðaÞ.
To conclude, we have experimentally demonstrated that

the magnetic properties of Ni influence the Casimir inter-
action as predicted by the Lifshitz theory combined with
the plasma model approach. The Drude model approach in
application to magnetic metals is excluded at a 95% con-
fidence level. We have also shown that any hypothetical
patch potential will only exacerbate the deviation from
the Drude model approach. The obtained results allow
realization of the Casimir repulsion through a vacuum
gap which could lead to many potential applications in
nanotechnology.
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