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We study dynamical phase transitions from antiferromagnetic to paramagnetic states driven by an
interaction quench in the fermionic Hubbard model using the nonequilibrium dynamical mean-field
theory. We identify two dynamical transition points where the relaxation behavior qualitatively changes:
one corresponds to the thermal phase transition at which the order parameter decays critically slowly in a
power law o ¢~ '/2, and the other is connected to the existence of nonthermal antiferromagnetic order in
systems with effective temperature above the thermal critical temperature. The frequency of the amplitude
mode extrapolates to zero as one approaches the nonthermal (quasi)critical point, and thermalization is
significantly delayed by the trapping in the nonthermal state. A slow relaxation of the nonthermal order is

followed by a faster thermalization process.
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In many physical systems out of equilibrium, phase
transitions occur as a real-time process of symmetry break-
ing or symmetry recovery. Examples for such “dynamical
phase transitions” include the evolution of the Universe
[1], liquid helium [2], and photoinduced phase transition in
solids [3-5]. The macroscopic aspects are often described
by the time-dependent Ginzburg-Landau theory, where the
order parameter is supposed to vary sufficiently slowly in
time and space, so that the system can be considered to be
locally close to thermal equilibrium. On the other hand,
recent experimental developments of time-resolved mea-
surement techniques in solids [6] and cold atoms [7] allow
one to study dynamical phase transitions very far from equi-
librium on the microscopic time scale of correlated quantum
systems. In these cases, a “‘near-equilibrium” description
might not be applicable. For instance, it has been recently
suggested that superconductivity can be induced above the
equilibrium critical temperature (7.) by coherently exciting
certain lattice vibrations, and that it lasts for a relatively long
time (a few tens of ps) before thermalization occurs [5].
This observation is reminiscent of the prethermalization
phenomenon [8—11], or the dynamics in the presence of a
nonthermal fixed point in relativistic quantum field theories
[12]. A fundamental question that we pose here is if the
existence of such a nonthermal fixed point in correlated
condensed matter systems allows symmetry-broken states
to survive above T, and how it affects the dynamics.

An important and still unresolved issue is how to char-
acterize a nonequilibrium phase transition and its critical
behavior for quantum systems [13,14]. Previous studies
have in particular focused on the dynamics near quan-
tum phase transitions in low dimensional systems (e.g.,
Refs. [15-18]). Higher dimensional systems are usually
expected to show a thermal criticality out of equilibrium
since quantum fluctuations are well suppressed. In this
Letter, we study a dynamical phase transition for a simple
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microscopic model of correlated materials, namely the
Hubbard model. In equilibrium, the model exhibits a
phase transition from paramagnetic (PM) to antiferromag-
netic (AFM) order [see the phase diagram in Fig. 1(a)].
By changing the interaction in time, we cross the phase
boundary dynamically. In particular, we explore the
weak-coupling regime of the Hubbard model (for the
strong-coupling side, see our complementary work [19]).
Contrary to the naive expectation, we find that the non-
equilibrium relaxation behavior can be very different
from the thermal one even in the large-dimensional limit.
A new phenomenon that we demonstrate here is that in
addition to the thermal critical point there exists one more
quasicritical point (or sharp crossover) at which some time
(energy) scale almost diverges (vanishes). Between these
points, the system is trapped in a nonthermal “‘ordered”
state [Fig. 1(b)], where the order parameter stays nonzero
even though the effective temperature (which will be
defined below) is above T.,.
The model Hamiltonian is given by
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where €, is the band dispersion, c}:g (cky) 18 a creation
(annihilation) operator of fermions with spin o, U is the
(time-dependent) interaction strength, and 7,;, = c;rgcm.
For convenience, we take a semicircular density of states,
D(e) = +J4 — (e/1*)*/(2mt*), and use ¢* (f*~!) as the unit
of energy (time). We only show results for the half-filling
case. The initial state is in thermal equilibrium with tem-
perature 7', which is chosen such that the initial value of the
staggered magnetization m = (|A; — #y|) is 0.4. The inter-
action is changed as U(r) = U; + (U; — Upt/t, (0 =t =
t,) with quench time 7, = 8 fixed. The interaction quench
can be implemented in cold atom systems with the use of
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FIG. 1 (color online). (a) Equilibrium phase diagram of the
Hubbard model in the weak-coupling regime at half filling,
calculated by DMFT with several different impurity solvers.
QMC data are taken from Ref. [25]. Effective temperatures for
quenches from a fixed initial state (U; = 2, black dot) to various
final states (open dots) are shown. Inset: Staggered magnetiza-
tion m as a function of 7" at U = 2. (b) Nonequilibrium phase
diagram for a quench U; — U, with the fixed initial magneti-
zation, m(0)=0.4. For U, > (<)Uth, the system finally thermal-
izes to an AFM (PM) state. A nonthermal AFM order emerges in
the colored region. The shading indicates the increasing lifetime
of the nonthermal AFM state as U; is reduced.

the Feshbach resonance, or by modifying the depth of the
lattice potential, and has also been proposed to be possible
in solids driven by strong electric fields [20,21].

The time evolution of the Hubbard model with AFM
order is studied with the nonequilibrium dynamical mean-
field theory (DMFT) [22,23]. It becomes exact in the large-
dimensional limit [24], where the self-energy becomes
local in space but keeps dynamical correlations. When
one allows for AFM states in the single-site DMFT, the
self-consistency condition reads A,(t, 1) = £2G,(t, 1)
[19,22] [A,(t, ¢'): hybridization function]. Since we are
interested in the microscopic dynamics in a single mag-
netic domain, the system is assumed to take a spatially
homogeneous configuration.

In order to treat the long-time behavior of symmetry-
broken states, we adopt the third-order weak-coupling exp-
ansion as an impurity solver, i.e., expand all the self-energy
diagrams, including the Hartree term, by Weiss Green
functions G, (z, ') (bare propagators) up to third order in
U. Although the bare expansion is not a conserving ap-
proximation in the sense of Baym and Kadanoff, it turns
out to work remarkably well in the weak-coupling regime
(U = 3). For instance, the total energy is approximately

conserved with negligibly small drifts. By comparison to
quantum Monte Carlo (QMC) results [25], we confirmed
that 7, and m in equilibrium are correctly reproduced
[Fig. 1(a)], which is a considerable improvement from
the Hartree approximation [Fig. 1(a)] and the second-order
iterative perturbation theory [22].

Let us first look at results for quenches from U; = 2 to
various Uy (< U,). As shown in Fig. 2(a), m() quickly
decreases after the quench due to the reduction of U, and
starts to oscillate coherently (amplitude mode) with a slow
drift. As Uy decreases below ~1.2, the oscillation disap-
pears, and m exponentially decays to zero. Assuming that
the nonintegrable Hubbard model thermalizes, the long-
time limit of the order parameter is determined by the ther-
mal value my, at some effective temperature 7. Since
the total energy is conserved after the quench (1 = 7,) in
the isolated system, T is given by the temperature of the
equilibrium system with the same total energy. The final
thermalized states are plotted as open dots in Fig. 1(a).
Since we are considering rather slow changes (¢, = 8) of
U, the final states roughly keep track of the constant
entropy curve [26].

The evaluated my, are indicated by arrows in Fig. 2, and
are plotted as a function of U in Fig. 4. One notices that
the center of the oscillation of m deviates more and more
from my, as Uy is reduced. Surprisingly, at U= U, th—1.42,
where my, vanishes « |[U; — U|? (Fig. 4) with the mean-
field exponent S :% (thermal phase transition), m still
exhibits oscillations around a nonzero value for a long
time. This suggests that the system is effectively trapped
in a nonequilibrium quasisteady state, or close to a non-
thermal fixed point, which allows for a long-lived
symmetry-broken state with T above T'... In the paramag-
netic phase, the system shows prethermalization [9-11];
i.e., the momentum-integrated quantities such as the double
occupancy thermalize faster than momentum-dependent
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FIG. 3 (color online). Time evolution of the momentum
distribution n; for quenches U; =2— (a) Uy = 1.4 and
(b) Uy = 1.2. The curves at ¢t = 100 are thermal distributions
achieved in the long-time limit.

quantities (e.g., the momentum distribution). Here a new
observation is that the order parameter m, even though
it is momentum integrated, also stays nonthermal, allowing
the symmetry-broken state to survive for a long time. This
can be attributed to the presence of ““classical fluctuations”
[12] in the Hartree term, which is absent in the paramag-
netic phase.

To look at the qualitative change of the relaxation
behavior around U; ~ 1.2 more closely, we calculate
the momentum distribution n,(f) = <c;£0(t)ck(,(t)> [27].
In Fig. 3, one can clearly see the qualitative difference of
ny between (a) Uy = 1.4 and (b) Uy = 1.2. In the former
case, waves are continuously generated at high energy, and
cascade down to the lower energy region. They eventually
reach the Fermi energy €, = 0, and lead to an oscillation of
the slope d.n at €, = 0 [27]. In the latter case, the wave
fronts never arrive at the Fermi energy but accumulate near
€; = 0, which results in a steepening slope d.n. This
evolution is opposite to a heating effect, where an initially
sharp momentum distribution is smeared out. Since the ny,
in Fig. 3(b) is very different from a thermal distribution
[curve at = 100 in Fig. 3(b)] the fast relaxation of m
for Uy, =12 [Fig. 2(a)] is due to dephasing, not
thermalization.

To characterize the nonthermal transition observed
around U ~ 1.2 quantitatively, we evaluate the relaxation
time 74, for the dephasing of m(t) by fitting with e/ o,
As shown in Fig. 4(a), the dephasing critically slows down
as Tyepn © Uy — UMM|™! with UM = 1.23 (nonthermal
transition point). At Uy = U™, m(r) shows a power-law
decay of /2 until thermalization starts to take place
around ¢ ~ 100. This indicates that one more quasicritical
point with an associated diverging time scale exists away
from the thermal critical point (U, = U™). Moreover, a
sharp kink is observed at U= U™ in the plot of the
inverse of the steepest slope (9.n) ! =(max,{|d.n(t)[}) !
at €, = 0 [Fig. 4(a)]. Because a true discontinuity in
the momentum distribution function, with (9.n)~!' =0,
would correspond to a power-law decay of the density
correlations in space, one may thus note that at the non-
thermal critical point the system evolves through an almost
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FIG. 4 (color online). Various quantities used to characterize
the qualitative change of the behavior around U, = U™ and
U= U™ (dashed lines) for quenches U; — U - Solid lines are
guides for the eye.

“critical state” before thermalization sets in. We also
determined the frequency w,, of the amplitude mode of
m and the frequency w, , of the oscillation of d.n at
€ = 0 for Uy > UM by measuring the peak-to-dip dis-
tance of the oscillations. Note that near the critical point
the period of the oscillation exceeds the lifetime (~100) of
the trapped state, so that a meaningful measurement is not
possible. However, the results in Fig. 4(a) indicate that w,,
and w,_, extrapolate to zero as ~|U,; — U™|. Based on
this fact, we conclude that the amplitude mode is associ-
ated with the nonthermal fixed point, not with the thermal
phase transition. This is not expected in the Ginzburg-
Landau picture, where the oscillation disappears when
the curvature of the free energy potential at the origin
changes sign at the thermal critical point.

This quasicritical point (or sharp crossover) becomes
an exact critical point in the weak-correlation limit, where
the dynamics is described by the Hartree approximation.
As we show in the Supplemental Material [27], the
Hartree equation is mathematically equivalent to the time-
dependent BCS equation, which is known to be integrable
with infinitely many conserved quantities [28,29]. There is
a strict transition for the motion of the order parameter
from damped oscillation to overdamped decay that is both
associated with a diverging dephasing time (overdamped
decay) and a vanishing of the amplitude-mode frequency.
What we found here is that the qualitative aspects of the
transition are maintained even in the regime where the
Hartree approximation breaks down (U = 0.5) due to
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quantum corrections from higher-order diagrams. In fact,
the Hartree equation gives quantitatively very different
results in this regime [27].

As one increases U;, the system spends less time near the
nonthermal fixed point, and thermalization occurs earlier.
For U; = 2.5 [Fig. 2(b)], coherent amplitude oscillations
are not visible anymore, and only a bump structure remains
on a short time scale (1 = 30) for Uy > 1.8. In this inter-
action regime the system does not show a clear signature of
a transition, but a nonthermal crossover behavior is still
seen in various quantities [Fig. 4(b)] around U, = Unth ~
1.85, which is estimated from the maximum of d.n. For
Ur < U™ we find that the order parameter m shows a
two-step relaxation [Fig. 5(a)]; i.e., the short-time and
long-time dynamics have different exponential decay rates.
The former is identified to be 7g4.,p, since it is smoothly
connected to what we have defined as 74, in the previous
U; = 2 case. The latter is related to the thermal phase
transition where my, disappears, hence denoted by 7y,
[30]. The obtained 74y, and 7y, are shown in Fig. 4(b).
Interestingly, in most cases T4y 18 larger than 7y, that is,
the slow dephasing of m is followed by faster thermaliza-
tion. Furthermore, thermalization is significantly delayed
compared to 7,. At Uy = 1.9, for example, 7, = 15.3 while
the delay time of thermalization is >100. This allows the
order parameter to survive longer than the thermalization
time constant.

Finally, let us examine the relaxation around the thermal
critical point. Thermalization critically slows down as one
approaches the thermal critical point [Fig. 4(b)] with

T < U, — UB| (1)

which, unlike 74, remains even when the interaction is
increased. Since the critical behavior around the thermal
transition is universal, i.e., does not depend on details of
the initial state or the the ramp protocol, it can be described
by equilibrium properties. In fact, near a thermal (or quan-
tum) critical point the relaxation time is known to behave
asty, ~ Uy — U™| =2 [13]. Here v is the critical exponent
that characterizes the divergence of the correlation length,
é&~|U; — UM, and z is the dynamical critical expo-
nent. Our result (1) is consistent with the mean-field expo-
nents » = 5 and z = 2 for nonconserved order parameters
[13]. Exactly at the thermal critical point (U, = U™), the
correlation time diverges, and the order parameter thermal-
izes in a power law. In Fig. 5(b), we show the log-log plot
of m around the thermal critical point (U" = 2.40). The
curve agrees very well with

m o 12, (2)

This is consistent to the prediction of the dynamical
scaling ansatz [13], m ~ 8/ with the mean-field
exponent 8 = 1.
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FIG. 5 (color online). (a) The log plot of m for quenches U; =
25— Uy =16, 1.7, 1.8, 1.9 from bottom to top. The straight
lines show fits of the two exponential relaxations. (b) The log-log
plot of m for quenches U,-=2.75—>Uf=2.2,2.25,...,2.6 from
bottom to top. The straight line shows the slope of a power-law
decay o 171/2,

We summarize our results in a nonequilibrium phase
diagram in Fig. 1(b). The results do not qualitatively
change away from half filling [27] or with different initial
m or T. In fact, we numerically confirmed with the Hartree
equation and the nonequilibrium DMFT that the slightly
doped (=5%) system can be trapped in a nonthermal
ordered state, and that the “critical”” behavior at the non-
thermal fixed point is the same. Our findings are applicable
not only to antiferromagnetic order but also to supercon-
ductivity and charge density wave order if one translates
the repulsive model to an attractive model [31]. An open
question of practical importance is how to access this
nonthermal fixed point. While we focused here on interac-
tion quenches, the phenomenon is not specific to the par-
ticular quench protocol. For example, we have confirmed
that a back-and-forth quench [27] gives similar nonthermal
critical behavior with elevated Ty, implying that the
overall change of the interaction parameter is not essential.
This universality nature of the phenomenon will open up
a possible route to experimentally reach the nonthermal
fixed point such as heating the system with laser irradia-
tion. Since the order parameter is connected to the energy
gap, the nonthermal order can be monitored with time-
resolved optical and photoemission spectroscopies.
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