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We investigate the connection between a formal property of the critical behavior of several disordered

systems, known as ‘‘dimensional reduction,’’ and the presence in these systems at zero temperature of

collective events known as ‘‘avalanches.’’ Avalanches generically produce nonanalyticities in the func-

tional dependence of the cumulants of the renormalized disorder. We show that this leads to a breakdown

of the dimensional reduction predictions if and only if the fractal dimension characterizing the scaling

properties of the avalanches is exactly equal to the difference between the dimension of space and the

scaling dimension of the primary field. This is proven by combining scaling theory and the functional

renormalization group. We therefore clarify the puzzle of why dimensional reduction remains valid in

random field systems above a nontrivial dimension (but fails below), always applies to the statistics of

branched polymer, and is always wrong in elastic models of interfaces in a random environment.
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In the theory of disordered systems, ‘‘dimensional
reduction’’ (DR) is the property shared by several models
that the long-distance physics in the presence of quenched
disorder in some spatial dimension d is the same as that
of the pure model with no disorder in a reduced spatial
dimension d� 2. In the known examples where it has
been found through perturbation theory, i.e., the random
field Ising model (RFIM) [1], elastic manifolds in a
random environment [2] (abbreviated below as RM), the
random field (RF) and random anisotropy (RA) OðNÞ
models [1,3], and the statistics of dilute branched polymers
(BP) [4], it entails two conditions: (1) that the long-
distance physics is controlled by a zero-temperature fixed
point, so that it can be equally described from the solution
(s) of a stochastic field equation at zero temperature
(T ¼ 0), and (2) that an underlying supersymmetry
emerges in the field-theoretical treatment of the stochastic
equation [5–7]. DR, however, is known to be wrong in the
RF and RA models in low enough dimension (a rigorous
proof [8] exists for the RFIM in d ¼ 2 and 3) and the RM
model [2]. On the other hand, it is proven to be right for the
BP case in all dimensions below the upper critical one [9].

We have recently shown that the breakdown of DR and
the spontaneous breaking of the underlying supersymmetry
take place below a nontrivial critical dimension [10] in the
RF OðNÞ model: This dimension is close to 5 for the Ising
(N ¼ 1) version and decreases continuously asN increases
until it reaches 4 when N approaches 18 (the upper critical
dimension is equal to 6 for random field systems) [12–14].
Describing this phenomenon requires a renormalization
group (RG) approach that is functional, as the origin of
the DR breakdown is the appearance of a nonanalytic
dependence of the renormalized cumulants of the RF
(a linear ‘‘cusp’’) in the dimensionless fields, and non-
perturbative, as it takes place away from regimes where

some form of perturbation analysis is possible (except
for the OðNÞ model when d is close to the lower critical
dimension [12,14]). A similar conclusion was previously
reached for the RM case, but there the DR predictions fail
for all dimensions at and below the upper critical dimen-
sion and can be already assessed through a functional but
perturbative RG [15–17].
The existence of a cusp in the cumulants of the renor-

malized disorder can be assigned to the presence of
collective events known as ‘‘avalanches.’’ In any typical
sample of a disordered model, the ground state, which is
the relevant configuration that describes the equilibrium
properties of the system at T ¼ 0, abruptly changes for
specific (sample-dependent) values of the external source;
such a change is precisely an avalanche [18–24]. The same
phenomenon is observed, still at T ¼ 0, when the system
is driven by the external source without being allowed to
equilibrate. The corresponding avalanches then take place
out of equilibrium, between two metastable states of the
system [23,25–28]. The fact that abrupt changes corre-
sponding to discontinuous variations of the magnetization
(in the language of magnetic systems) are found at T ¼ 0
should actually come as no surprise. In disordered systems,
this can take place even in zero-dimensional models [14].
The central question, which we address in this Letter, is
then the following: Under which conditions can avalanches
influence the long-distance properties of a given disordered
system and lead to a breakdown of DR?
Consider a disordered system of linear size L at T ¼ 0

in which avalanches are present. We use the language of
magnetic systems and characterize configurations by the
local magnetization. All considerations, however, apply
equally well to configurations described by a continuous
field, in or out of equilibrium, and to nonmagnetic systems.
We also focus on situations in which the local order
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parameter (the ‘‘magnetization’’) is linearly coupled to the
external source J, which for simplicity is taken as uniform
in space. The avalanches can then be characterized by their
size S (the overall change in the total magnetization)
whose distribution is described by a density �LðS; JÞ.

The magnetization mLðJ;hÞ is the spatial average of the
local order-parameter field for a given sample character-
ized by the disorder realization h. Its change between two
values of the external source J1 and J2 (with, say, J2 > J1)
is the sum of two contributions: A first one comes from
the smooth changes in the configuration, and another one
comes from the avalanches that take place between J1
and J2. As a consequence of the latter, the even moments
of the difference ½mLðJ1;hÞ �mLðJ2;hÞ�, which are sym-
metric in the exchange of J1 and J2, display a linear cusp
when J2 ! J1:

½mLðJ2;hÞ �mLðJ1;hÞ�2p

¼ jJ2 � J1jL�2pd
Z 1

Smin

dSS2p�LðS; JÞ þOð½J2 � J1�2Þ;

(1)

where Smin is a microscopic lower cutoff and the overline
denotes the average over the quenched disorder.

It is easily realized that the nth moment is obtained by
considering disorder averages over n copies of the same
sample, with each copy coupled to a distinct external source
Ja, a ¼ 1; . . . ; n. For instance, the secondmoment is expres-
sible in terms of a two-point Green’s function at zero

momentum ~GLðq ¼ 0; J1; J2Þ ¼ Ld½mLðJ1;hÞmLðJ2;hÞ �
mLðJ1;hÞmLðJ2;hÞ�, which is an extension to generic
sources J1 � J2 ofwhat is usually called the ‘‘disconnected’’
two-point function in the theory of disordered systems.
One-particle irreducible (1PI) correlation functions (or
proper vertices) [29] associated with the above Green’s
functions can be introduced along the same lines. From
Eq. (1), with p ¼ 1, one immediately derives that, for

instance, the two-point Green’s function ~GLðq ¼ 0; J1 ¼
J � �J; J2 ¼ J þ �JÞ has a nonanalytic dependence as
�J ! 0, with the amplitude of the linear cusp related to the
second moment of the avalanches. This can be transposed to
the associated 1PI vertices and can be generalized to higher
orders as well.

Avalanches, therefore, always induce a linear cusp in the
functional dependence of the correlation functions associ-
ated with the cumulants of the renormalized disorder at
T ¼ 0. However, we are interested in situations where
avalanches occur on all scales, as found for instance in
the RFIM at criticality, in the rough phase or at the depin-
ning transition of a RM, etc.

At large scale, when the correlation length and the extent
of the largest typical avalanches have reached the system
size L, one expects that the avalanche size distribution can
be written in a scaling form [23,24,28,30]:

�LðS; JÞ ¼ �0;LðJÞS��D
�
S

SL
; jJ � JcjSc

�
; (2)

where SL � Ldf is the size of the largest typical ‘‘critical’’
avalanches (see Ref. [28] for a careful discussion) which acts
as a cutoff for D that decays exponentially for S=SL * 1.
The critical conditions correspond to J ¼ Jc (for the RFIM
at equilibrium, one has Jc ¼ 0 due to the Z2 symmetry,
and, for the RM, there is no condition on J, as the whole
phase is critical), and �0;LðJÞ is an overall factor such that

�LðSÞ=�0;L is normalized. This factor can be evaluated

by considering the so-called ‘‘connected’’ susceptibility
�c;LðJÞ, which is the standard magnetic susceptibility di-

vided by the temperature and which is obtained by deriving
mL with respect to J. �c;LðJÞ can be expressed as

�c;LðJÞ ¼ �smooth
c;L ðJÞ þ 1

Ld

Z 1

Smin

dSS�LðS; JÞ: (3)

For J ¼ Jc, �c;L goes as L2��. Under the natural assump-

tion that the contribution from the avalanches is at least of
the order of the smooth one, by using Eqs. (2) and (3) and
the fact that the first moment of the avalanches is domi-
nated by large avalanches (which is true when 1< �< 2,
a condition usually fulfilled), one then obtains that

�0;LðJcÞL�dþð2��Þdf � L2��. As a result, Eq. (1) leads to

½mLðJ2; hÞ � mLðJ1; hÞ�2p � jJ2 � J1jL2���ð2p�1Þðd�dfÞ.
The linear cusp in ~GLðq ¼ 0; J � �J; J þ �JÞ when
�J ! 0 is then found as

~GLðq ¼ 0; Jc � �J; Jc þ �JÞ � ~GLðq ¼ 0; Jc; JcÞ
� j�JjLdfþ2��: (4)

The amplitude of the cusp therefore diverges as L ! 1.
[One should, however, keep in mind that the whole func-

tion ~GLðq ¼ 0Þ itself diverges as L4� �� at criticality.] From
Eq. (4), it is easily derived that the associated 1PI correla-
tion function �Lðq ¼ 0;m1; m2Þ, which is the second
cumulant of the renormalized disorder, also has a cusp
in jm2 �m1j as m2 ! m1. Indeed, after introducing
m1 ¼ mc � �m and m2 ¼ mc þ �m, where �m ! 0
and mc corresponds to the value of the average magnet-
izationat criticality, and using the relation between
Green’s functions and 1PI functions [29] as well as

�m ¼ mLðJc þ �J; hÞ � mLðJc � �J; hÞ ’ �J�c;LðJcÞ
when �J ! 0, we derive

�Lðq ¼ 0;mc � �m;mc þ �mÞ ��Lðq ¼ 0;mc;mcÞ
’ �c;LðJcÞ�2½ ~GLðq ¼ 0; Jc � �J; Jc þ �JÞ

� ~GLðq ¼ 0; Jc; JcÞ� � j�mjLdf�2ð2��Þ: (5)

As already stressed, the functional RG (FRG) is a power-
ful and necessary framework to describe the critical behav-
ior of the disordered systems of interest. Within such an
approach, which is a version of Wilson’s continuous RG
[31–34], the fluctuations are progressively taken into
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account by introducing an infrared cutoff that enforces the
decoupling of the low- and high-momentum modes at a
running scale k. Flow equations then describe the evolution
as one decreases k, and for k ¼ 0 all fluctuations are
included. Contrary to the standard RG that considers
only a few coupling constants, the FRG accounts for an
infinity of couplings through the flow of full functions.
Here, one ends up with flow equations for the moments
of the renormalized disorder. For instance, an equation is
obtained for the second cumulant of the renormalized
random field or random force �kðq ¼ 0;�1; �2Þ [12–17],
which is the quantity already considered in the previous
sections, with � and k playing here the same role as the
local magnetization m and the inverse system size 1=L.

In order to reach the fixed point that controls the long-
distance behavior under study, one must introduce scaling
dimensions and convert the quantities appearing in the RG
flow equations from ‘‘dimensionful’’ to ‘‘dimensionless.’’
For the cases of interest, we have stressed that the fixed
point is at zero temperature. Temperature is then a danger-
ously irrelevant variable, and an associated exponent � > 0
is introduced through an appropriate definition of a renor-
malized temperature Tk [12–17,35]: Tk � k�. Near the
zero-temperature fixed point, the dimension d� of the field

� is modified from its standard value of ðd� 2þ �Þ=2,
with � the anomalous dimension, by a term involving
the temperature exponent: d� ¼ ðd� 2þ �� �Þ=2 ¼
ðd� 4þ ��Þ=2, where we have also introduced the
additional anomalous dimension �� through the relation
� ¼ 2þ �� ��. Similarly, the second cumulant �k has
the scaling dimension of a two-point 1PI vertex 2� �,
modified by the temperature exponent, i.e., 2� �� � ¼
�2�þ ��; it can be put in dimensionless form as

�kðq¼0;�1;�2Þ�k�ð2�� ��Þ�kð0;’1;’2Þ, where ’ is the
dimensionless field.

DR corresponds to � ¼ 2 ( �� ¼ �) and to all other
exponents equal to their value in the system without
disorder in dimension d� 2. The main outcome of the
FRG studies is that DR breakdown is related to the pres-
ence of a cusp in the functional dependence of the dimen-
sionless second cumulant of the renormalized random field
or force �kð0;’1; ’2Þ in the vicinity of the T ¼ 0 fixed
point [12–17]. More concretely, after introducing ’ ¼
ð’1 þ ’2Þ=2 and �’ ¼ ð’2 � ’1Þ=2, the ‘‘cuspy’’ behav-
ior that changes the critical exponents from their DR
prediction is of the form [13,14]

��ð0;’��’;’þ�’Þ¼��;0ð’Þþ��;að’Þj�’jþOð�’2Þ;
(6)

when �’ ! 0, with ��;a < 0; the star indicates the fixed-

point value at k ¼ 0. As a result of a nonzero ��;a, the
exponent � takes a nontrivial d-dependent value<2 and �
and �� differ from the dimensional reduction values,
with �� � �.

The connection between the quantities computed
through the FRG and those previously discussed is made
by associating the infrared cutoff k with 1=L [34].
Equation (5) can then be expressed in a dimensionless
form by dividing the cumulant �L and the magnetization

�m by their scaling dimensions L2�� �� and L�ðd�4þ ��Þ=2,
respectively. We immediately obtain that the amplitude of
the linear cusp in dimensionless form scales as

Ldf�2ð2��Þ�ð2�� ��Þ�ðd�4þ ��Þ=2 ¼ Ldf�ðdþ4� ��Þ=2; (7)

which can also be rewritten as Ldf�ðd�d�Þ. By comparison
with Eq. (6), one therefore finds that the cusp persists in the
dimensionless quantities when L ! 1, i.e., at the fixed
point, if and only if df ¼ d� d�. If df < d� d�, the cusp

is only subdominant and does not affect the leading critical
behavior and the associated exponents. (Note that the
condition df > d� d� is not compatible with the result

of the FRG studies, in which proper renormalized theories
have always been found with no stronger nonanalyticities
than the linear cusp.)
We conclude from the above derivation that DR breaks

down iff df¼d�d�. On the other hand, DR remains valid

if df < d� d�, despite the presence of the avalanches

and of a cusp in the dimensionful cumulants of the effec-
tive disorder at T ¼ 0. In the latter case, the difference
ðd� d� � dfÞ can be reinterpreted and computed in the

FRG: When perturbing the ‘‘cuspless’’ fixed-point value of
the dimensionless cumulant with a function that itself dis-
plays a linear cusp, the amplitude of the cuspy perturbation
should go to zero as k ! 0 so that

�kð0;’� �’;’þ �’Þ ’ ��ð0;’� �’;’þ �’Þ
þ k�f�ð’; �’Þ; (8)

with � ¼ ðd� d�Þ � df > 0 and f�ð’; �’Þ ’ j�’jf�ð’Þ
when �’ ! 0. The fractal dimension df can then be

obtained from an investigation of the irrelevant directions
associated with nonanalytic eigenfunctions around the
fixed point. This is what we have done by solving the
nonperturbative FRG equations derived in Ref. [14] for
a function �k of the form given in Eq. (8) (see the
Supplemental Material [36]).
We are now in a position to discuss the consequences of

the above conditions for several systems in which DR is
predicted by standard perturbation theory. Consider first
the mean-field limit. The exponents � and df in Eq. (2) can

easily be derived for fully connected models [30], and one
finds � ¼ 3=2 and df ¼ 4 [37]. At the upper critical

dimension duc, the anomalous dimension �� ¼ 0 so that
d� ¼ ðduc � 4Þ=2. One should thus compare df ¼ 4 and

d� d� ¼ duc=2þ 2. For RF and RA models (we include

here models with N-component fields which we expect
to behave in a similar manner as that of the single-
component one), duc ¼ 6 so that DR should apply.
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The same is true for the BP statistics for which duc ¼ 8
[39]. On the other hand, for the RM case, duc ¼ 4: A
failure of DR is then expected, possibly only in logarithmic
corrections at d ¼ duc but more severe as one lowers the
dimension.

Below duc, there must be a nonzero range of dimensions
for which the DR predictions correctly describe the critical
behavior of the RF, RA, and BP models but likely not that
of the RM one. Actually, the latter has been studied in great
detail through the perturbative FRG in d ¼ 4� 	
[19,25,38]. It was found that df is equal to dþ 
 , where


 is the exponent describing the roughness of the interface
(for a single-component displacement field). As the dimen-
sion d� of the field is itself equal to �
 , it follows that

the equality df ¼ d� d� is always verified and that DR

never applies, as indeed found by direct computation of
the critical exponents within the FRG or in computer
simulations. This conclusion is valid for the pinned phase,
in equilibrium, and for the depinning threshold in the
driven case.

For the RFIM at equilibrium, we have shown through a
nonperturbative FRG that DR breaks down below a
nontrivial dimension dcusp ’ 5:1 [10,13,14]. According to

the above conditions, the avalanche exponent df should

then be equal to d� d� ¼ ðdþ 4� ��Þ=2 below dcusp
and to ðdþ 4� ��Þ=2� �, where � is the eigenvalue
associated with the irrelevant cuspy directions around
the cuspless fixed point, above dcusp. In Fig. 1, we plot

the theoretical prediction for df based on the above rela-

tions and on the computation of d� and � from the solution

of the nonperturbative FRG flow equations [14] (see the
Supplemental Material [36]). At the lower critical

dimension, dlc ¼ 2, one expects the avalanches to be com-
pact even at criticality, with therefore df ¼ d ¼ 2 (see also

Ref. [27]). As d� ¼ 0, one then finds that df ¼ d� d�, as

predicted.
Finally, for the BP statistics, so long as DR applies, �� ¼

2� and is negative. In consequence, d� d� ¼ dþ 4�
��> dþ 4. As the fractal dimension df should also be less

than the dimension of the embedding space, one can see
that df � d < ðdþ 4Þ=2 when d & 4. We therefore con-

clude that DR applies, at least, when d � 4 and in the
vicinity of the upper critical dimension duc ¼ 8 (see
above); the existence of an intermediate range of dimen-
sions characterized by DR breakdown is highly unlikely.
This is of course in agreement with the known exact
results [9].
To summarize, we have related the breakdown of DR to

the scaling characteristics of avalanches and clarified that
the intriguing result of why DR fails below a nontrivial
dimension for the RFIM is always broken for random
elastic manifolds but applies to the branched-polymer
problem. Already, in this latter example, the present results
and formalism go beyond the realm of disordered systems.
They may also be useful in other quite different contexts,
such as turbulence, structural glasses, hysteresis in a
variety of materials, socioeconomic phenomena, or non-
Abelian gauge theories.
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