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We demonstrate a novel method to measure Nth-order (N ¼ 1; 2; 3; 4) interferometric autocorrelation

with high sensitivity and temporal resolution. It is based on the combination of linear absorption and

nonlinear detection in a superconducting nanodetector, providing much higher efficiency than methods

based on all-optical nonlinearities. Its temporal resolution is only limited by the quasiparticle energy

relaxation time, which is directly measured to be in the 20 ps range for the NbN films used in this work.

We present a general model of interferometric autocorrelation with these nonlinear detectors and discuss

the comparison with other approaches and possible improvements.
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The temporal correlation functions of various orders are
of fundamental importance in the classical and quantum
description of optical fields. The first-order (field) auto-
correlation function describes temporal coherence and
therefore spectral linewidth, and second-order (intensity)
autocorrelation is used to measure the temporal properties
of pulsed sources and to distinguish quantum and classical
fields, whereas the measurement of higher-order autocorre-
lation is more sensitive to coherence features (e.g., photon
bunching) of the light field [1] and can be used to deter-
mine the asymmetry of light pulses [2]. Whereas the
first-order autocorrelation function is easilymeasured using
an interferometer and a linear detector [3], themeasurement
of higher-order correlation functions requires a process that
is nonlinear in the intensity IðtÞ. In interferometric autocor-
relators, the normalized second-order correlation function

gð2Þð�Þ ¼ hIðtÞIðtþ �Þi=hIðtÞi2 is usually measured by
using either second-harmonic generation (SHG) in a non-
linear crystal, followed by a linear detector [4], or two-
photon absorption (TPA) in the detector itself [5,6]. In both
cases, the detector measures the square of the total intensity
at the output of the interferometer hI2totðtÞi / hI2ðtÞi þ
2hIðtÞIðtþ �dÞi where �d is the delay between the two
arms of the interferometer, together with interference terms
which are sensitive to the phase properties of the beam.
While these approaches offer very high temporal resolution,
since the related processes are nearly instantaneous, their
sensitivity is limited by the low nonlinear susceptibilities
involved in the SHG or TPA processes. Because of the even
lower relevance of higher-order optical nonlinearities, mea-
surement of the autocorrelations of order N > 2 requires
very high input powers [2,7,8]. An alternative approach
consists of combining linear optical detection with non-
linear processing in the electrical readout, e.g., in a corre-
lation card, as in the Hanbury Brown-Twiss interferometer
[9]. In this case, sensitive single-photon detectors can be
used; however, the temporal resolution is limited to� 50 ps

by the jitter of the detector output and the amplification
and correlation electronics [10]. In addition, different from
interferometric autocorrelation, these approaches do not
provide any information on the phase properties.
In this Letter, we report a novel approach to the measure-

ment of the interferometric autocorrelation of order N � 2,
which is based on the combination of linear absorption and
nonlinear detection in a single device. The general principle
consists of absorbing incident photons in a linear absorber
(i.e., amaterial where the absorption probability per unit time
is proportional to light intensity), which produces an output
pulse only if two or more photons are absorbed within a
certain time interval in the femtosecond or picosecond range.
We show the implementation of this concept in a supercon-
ducting nanodetector (ND) where the nonlinearity is widely
tunable by varying the bias current. We directly measure the
temporal dynamics of the nonlinearity in the picosecond
range, andwe attribute it to the relaxation dynamics of photo-
created quasiparticles (QPs). We show its application to the
measurement of up to fourth-order interferometric autocor-
relation, observing an extremelyhigh sensitivity related to the
linear absorption process and to the low detector noise.
The superconducting nanodetector consists of a nano-

scale constriction in a superconducting wire (see Fig. 1).
The device used in this work is based on a 4.3 nm-thick
NbN film (critical temperature Tc ¼ 10:2 K) sputtered
on GaAs substrate and has a constriction size of about
150 nm, patterned by electron beam lithography and
reactive-ion etching. The nanodetector is biased with a
current Ib smaller than the superconducting critical current
Ic. Similarly to nanowire superconducting single-photon
detectors [12], the absorption of one or more photons
produces a nonequilibrium population of QPs in the nano-
detector’s active region, locally suppressing the supercon-
ductivity and increasing the probability of vortex crossing,
which can result in the transition to the normal state
[13,14]. The detection probability is a strong function of
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the absorbed energy (i.e., to the number of photons) and of
the bias current Ib so that the nanodetector can be set to
respond to � N photons by choosing Ib [15,16].

In this study, we focus on the temporal characteristics
of the nanodetector’s multiphoton response and on its
application as an interferometric autocorrelator. As we focus
here on the application to the characterization of classical
light sources, we describe the detection process as a
sequence of single-photon absorption events using the semi-
classical photodetection theory. Assuming an incident light
pulsewith cycle-average intensity IinðtÞ on the nanodetector,
the probability of creating a hot spot within a time interval
(t, tþ dt) is equal to �SIinðtÞdt, where � is related to the
absorbance �abs by � ¼ �abs=h� and S is the active area.
In the two-photon regime, for example, the click probability
Pclick (assumed � 1) is equal to the probability that two
photons are absorbed, weighted by a function �ð�12Þ of the
time difference �12 between absorption of the first and
the second photon at times t1 and t2, respectively,

Pclick ¼
Z þ1

�1

Z þ1

�1
�ðt2 � t1Þ�SIinðt1Þ�SIinðt2Þdt1dt2

¼ �2S2
Z þ1

�1
�ð�12Þ

Z þ1

�1
IinðtÞIinðtþ �12Þdtd�12:

(1)

The �ð�12Þ function, named the nonlinear response
function (NRF) in the following, depends on the QP dy-
namics in the superconductor and determines the intrinsic
response time �ND of the nanodetector. The value of �ð�12Þ
is expected to decay from a maximum value of�ð0Þ (which
depends on Ib) to 0 for �12 � �ND. In general, the detec-
tion probability in the N-photon regime (N � 2) is

Pclick ¼ �NSN
Z þ1

�1
�Nð�1N; �2N; . . . ; �N�1;NÞ

�
Z þ1

�1
IinðtÞIinðtþ �1NÞIinðtþ �2NÞ . . .

� Iinðtþ �N�1;NÞdtd�1Nd�2N . . . d�N�1;N; (2)

where �iN ¼ tN � ti denotes the difference between the
absorption times of the ith and the last photon.

When the incident pulse width is much larger than �ND,
Eq. (2) is approximated as Pclick /

Rþ1
�1 INinðtÞdt. When a

nanodetector is placed at the output of a Michelson
interferometer, the input intensity reads IinðtÞ /
jEðtÞ þ Eðtþ �dÞj2 and the Pclick in the N-photon regime
is proportional to the Nth-order interferometric autocorre-
lations given by Pclickð�dÞ /

Rþ1
�1½jEðtÞ þ Eðtþ �dÞj2�Ndt.

In the two-photon regime, by filtering out the interference
terms we obtain Pclickð�dÞ / hI2ðtÞi þ 2hIðtÞIðtþ �dÞi
and, therefore, the gð2Þð�dÞ, similarly to the SHG- and
TPA-based autocorrelators.
The NRF can be measured by probing the autocorrelator

with short pulses. For a pulse duration much shorter than
�ND, the response of the nanodetector placed at the output
of a Michelson interferometer can be found from Eq. (2).
In the two-photon regime, for example, after filtering
out the interference terms, Eq. (1) becomes Pclickð�dÞ /
�ð0Þ þ �ð�dÞ þ fð�dÞ (see Supplemental Material [17]).
The function fð�dÞ depends on the degree of first-order
coherence of the input light and is different from zero
only for delays shorter than the coherence time. For longer
delays, the Pclickð�dÞ, normalized by its value at �d � �ND,
is expected to vary as Pclickð�dÞ=Pclickð1Þ ¼ 1þ
�ð�dÞ=�ð0Þ so that the NRF and therefore the autocorre-
lator’s timing resolution can be measured.
The NRF was first measured by sending 1.6 ps pulses

from an optical parametric oscillator (OPO) at �¼1:13�m
into a fiber-based Michelson interferometer and then to a
nanodetector held at a temperature of 1.2 K using a lensed
fiber producing a spot with an e�2 diameter of 5 �m. The
delay �d in the interferometer is controlled by a motorized
delay line (coarse control) and a fiber stretcher (fine con-
trol). The Ic of the device was about 26 �A. During the
measurement, the nanodetector was set in different photon
regimes by choosing a proper Ib. As shown in Fig. 2(a), the
count rate (CR) was measured as a function of the light
power at different Ib values. The solid lines with slopes
of 1.04, 2.06, 3.06, and 3.99 are the fits to the measured data

FIG. 2 (color online). (a) CR as a function of the light power
for different Ib values. The fitting lines with slopes of 1.04, 2.06,
3.06, and 3.99 indicate the one-, two-, three-, and four-photon
regimes, respectively. (b) Normalized CR as a function of �d,
measured when the detector was working at the four chosen
points [marked by large circles in (a)]. The solid lines are
calculation results (see text).

FIG. 1 (color online). Scanning electron microscope image of
a NbN superconducting nanodetector.
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in log-log scale in the power ranges where the one-, two-,
three-, and four-photon response was dominant [15]. We
chose one point at each of the four photon regimes and
measured the CR as a function of �d, normalized by its
values at long delays, as shown in Fig. 2(b). The data points
near �d ¼ 0, where the measured autocorrelation is sensi-
tive to the first-order coherence, are not shown in the plot
and were not considered in the fit since they introduce
additional fitting error (see Supplemental Material [17]).
At Ib ¼ 18:0 �A, the CR is independent of the delay since
the detector is working in the linear regime. When the Ib
was lowered to 12.5, 9.7, and 8:4 �A (corresponding to
the two-, three-, and four-photon regimes, respectively), a
maximum was observed at zero delay. Since the width of
these peaks is much wider than the OPO pulse width, the
measurement probes the intrinsic response of the detector.
In particular, the two-photon normalized response in
Fig. 2(b) directly provides the 1þ �ð�dÞ=�ð0Þ depen-
dence. The �ð�Þ value is determined by the thermalization
and relaxation processes of the photocreated QP and by the
functional dependence of Pclick on the QP concentration
[13,14]. Indeed, the QP population first grows as the
electron population thermalizes via electron-electron
scattering, in a time scale of a few ps, then decays due to
electron-photon interaction and phonons escaping to the
substrate [18]. This QP decay is expected to determine
the �ND value in the N-photon regime, since the Ib is
chosen so that Pclick is high only when all QP produced
by theN photons are present at the same time. As Pclick is a
strong function of the QP number, involving many micro-
scopic parameters, a fit of the measured �ð�Þ using a
microscopic model would not be reliable. Instead, we
introduce an empirical Gaussian NRF defined as �ð�12Þ ¼
�ð0Þ exp½�ð�12=�NDÞ2�. The fits to 10 measured two-
photon autocorrelation traces provide a �ND value of
20:4� 0:8 ps [19]. To fit the N > 2 traces, we further
assume that the multiphoton response factorizes as
�Nð�1N; �2N; . . . ; �N�1;NÞ ¼ �ð�1NÞ�ð�2NÞ . . . �ð�N�1;NÞ.

This is reasonable if one assumes that �N has an approxi-
mately exponential dependence on the total QP concen-
tration after absorption of the Nth photon, as suggested
by the vortex-assisted photodetection model [13,14],
and that the QP relaxation time does not depend on QP
concentration. Using the �ND value extracted from the
two-photon autocorrelation traces as described above,
Pclickð�dÞ was calculated for the three- and four-photon
regimes from Eq. (2) without additional fitting parameters
and shows excellent agreement with the experiment
[Fig. 2(b)], which provides strong experimental support
to our model.
With knowledge of the temporal resolution, autocorre-

lation experiments were performed on pulses generated by
a gain-switched 1:3 �m diode laser with 10 MHz repeti-
tion rate and about 70 ps pulsewidth. The one-, two-, three-,
and four-photon regimes were first found by choosing
different Ib values. At each Ib, CRs were recorded as a
function of �d in the N-photon (N ¼ 1, 2, 3, 4) regime as
shown in Figs. 3(a)–3(d), respectively. The fringe contrast
ratio is observed to increasewithN, in good agreement with
the theoretical values of 2, 8, 32, and 128 for N ¼ 1, 2, 3,
and 4, respectively. In the one-photon regime [Fig. 3(a)],

the normalized first-order autocorrelation function gð1Þð�dÞ
was calculated from the visibility of the interference fringes
[3]. ForN > 1, higher-order intensity autocorrelation traces
were obtained by applying a low-pass filter to the interfero-
grams in Figs. 3(b)–3(d). In order to explain the experi-
mental results, we assumed that the incident light was a
Gaussian pulse with a linear chirp. The electric field is
modeled as EðtÞ ¼ E0 exp½�4 lnð2Þð1þ iAÞt2=�2p�, where
E0 is the field amplitude, A is the linear chirp parameter
[22], and �p is the full width at half maximum (FWHM)

of the pulse. By fitting the measured jgð1Þð�dÞj in Fig. 3(a)
together with the second-order intensity autocorrelation
(low-pass trace) in Fig. 3(b), A and �p were determined

to be 5.3 and 70.6 ps. The third- and fourth-order inter-
ferometric autocorrelations were then calculated based on

FIG. 3 (color online). (a)–(d) Normalized CR as a function of �d in the different regimes at Ib of 18.0, 14.0, 11.5, and 9:6 �A
respectively. The jgð1Þð�dÞj [solid red line in (a)] and low-pass curves [solid red lines in (b)–(d)] agree well with the calculations
(dash-dotted blue lines). Upper-left insets: CR as a function of incident power in log-log scale. The fitting slopes of 1.01, 1.96, 3.08,
and 4.04 indicate the one-, two-, three-, and four-photon regimes, respectively. The green circles indicate the points chosen for the
measurements in the main panel. Upper-right insets: Expanded view of the interference fringes at small delays, plotted as a function of
the voltage VFS applied to the fiber stretcher. Lower-right inset in (d): FWHM of the fringes normalized by their period extracted from
the upper-right insets in (a)–(d) as a function of N, showing a 1=

ffiffiffiffi
N

p
dependence.
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Eq. (2) without additional fitting parameters. Their low-
pass traces show a good agreement with the experiments,
considering the very simplified assumption for the chirp.
An enlarged view of each interferogram is shown as an
upper-right inset in each panel of Fig. 3, showing a clear
narrowing of the fringes for increasing N. As shown in the
lower-right inset of Fig. 3(d), the FWHM of the fringes

normalized by their period scales as approximately 1=
ffiffiffiffi
N

p
,

which is a characteristic of multiphoton interferometry [23]
and further confirms our conclusions.

The nanodetector-based autocorrelator provides much
higher sensitivity as compared to conventional autocorre-
lators. The two-photon autocorrelation trace in Fig. 3(b)
was taken at PpkPav ¼ 5:6� 10�17 W2 (Ppk is the peak

power, and Pav is the average power), about 7 orders
of magnitude lower than the minimum reported PpkPav

based on TPA [24] and about 2 orders of magnitude lower
than the lowest PpkPav using SHG [25]. For input pulses

longer than �ND, Eq. (2) can be written as Pclick ¼
CND

Rþ1
�1 P2

inðtÞdt, where Pin ¼ IinS is the incident power

and CND ¼ ffiffiffiffi
�

p
�2
abs�ð0Þ�ND=ðh�Þ2 represents a nonlinear

response efficiency. Using the measured values of �abs ¼
1:5� 10�4, �ð0Þ � 0:5 [16], and dark count rate
Rdark ¼ 1 Hz, we derive a sensitivity of Pmin

pk Pmin
av � 5:8�

10�20 W2 (see Supplemental Material [17]), correspond-
ing to 	4 photons/pulse in our experiment. In a higher-
photon regime, the advantage of using linear absorption
is even larger. Indeed, the three-photon autocorrelation
shown in Fig. 3(c) was performed at an average power of
about 1 nW, corresponding to P2

pkPav � 2:0� 10�21 W3,

an improvement of about 21 orders of magnitude over
that in Ref. [26]. To the best of our knowledge, N-photon
interferometric autocorrelation for N > 3 has not been
reported before. As compared to autocorrelators based on
spatial coupling of the optical beam to multiple single-
photon detectors and electronic correlation [27], our nano-
detector provides higher temporal resolution, much easier
readout, and phase information.

The very high nonlinear response of the nanodetector can
be directly traced to the finite size and time duration
of the hot spot created by the real absorption of one photon,
as compared to the virtual transitions involved in TPA.
Indeed, a two-photon detection is triggered if the second
photon is absorbed within the volume and time duration of
the hot spot created by the first photon. This shows that a
compromise exists between CND and �ND: for the nano-
detector, the �ND value is determined by the QP relaxation
time while in TPA it is related to the lifetime of the virtual
states associated to the TPA transition, on the order of
femtoseconds [6]. A similar compromise exists in SHG-
based autocorrelators, where higher conversion efficiency
requires a longer SHG crystal translating into a smaller
phase-matching bandwidth and lower temporal resolution
�res [28,29]. Defining PpkPav�res as a figure of merit, the

present nanodetector is about 2 orders of magnitude better

than the record using TPA [24] and comparable with the
record based on SHG, where much higher experimental
complexity is required [25]. We note that a key advantage
as compared to SHG-based autocorrelators is the nanode-
tector’s large wavelength range, limited only by the require-
ment to operate in the desired N-photon regime, which
can be easily adjusted by varying the Ib. This, in principle,
enables the measurement of interferometric autocorrelation
from the visible to the mid-infrared wavelengths.
The sensitivity of our autocorrelator is presently limited

by the low �abs value related to the spatial mismatch
between the incoming beam and the nanodetector’s active
area and to the small thickness of the NbN film. By focus-
ing the beam with a high-numerical aperture lens, we can
achieve a much higher absorbance �abs � 10�2 [30]. The
integration of a plasmonic antenna and a bottom reflector
[31] could increase �abs to the 10�1 range, leading to
Pmin
pk Pmin

av � 10�25 W2 for the two-photon autocorrelation.

On the other hand, increasing the detector area (as done in
meander nanowire detectors [32]) results in �abs / L and
�ð0Þ / lhs=L (L is the nanowire length, and lhs is the hot
spot length) so that CND scales linearly with �abs. The
nanoscale nature of the detector is therefore crucial to
reaching the ultimate sensitivity. Finally, we note that the
20 ps temporal resolution in our experiments is limited to
the QP relaxation time in NbN films and could be much
improved using different superconducting materials, such
as high-Tc Y-Ba-Cu-O films, where relaxation times	1 ps
were observed [33], opening the way to the characteriza-
tion of Nth-order correlation functions in a few-ps range
with unprecedented sensitivity.
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