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We investigate the quantum phases of systems in which a multimode bosonic field is coupled to the

transitions between two flat electronic bands. In the literature, such systems are usually modeled using a

single or multimode Dicke model, leading to the prediction of superradiant quantum phase transitions for

large enough couplings. We show that the physics of these systems is remarkably richer than previously

expected, with the system continuously interpolating between a Dicke model exhibiting a superradiant

quantum phase transition and a quantum Rabi model with no phase transition.
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In cavity quantum electrodynamics experiments the pho-
ton confinement increases the light-matter coupling, even-
tually allowing for a single photon to be absorbed and
reemitted multiple times before escaping out of the cavity.
It is the hallmark of the strong coupling regime, realized
for the first time with Rydberg atoms in superconducting
cavities [1]. Still, while the strong coupling regime is
observable in these systems thanks to the impressive quality
factors of superconducting cavities, the strength of the
dipolar coupling between a single Rydberg atom and the
electromagnetic field, quantified by its quantum Rabi fre-
quency�, is bounded by fundamental reasons to be a small
fraction of the frequency of the transition !12 [2].

This bound can be lifted if photons couple to collective
superradiant electronic excitations [3]: N identical, coher-

ently excited dipoles behave as a single superdipole
ffiffiffiffi
N

p
times larger. Such a phenomenon opens up the possibility
to experimentally achieve the ultrastrong coupling regime,
in which the vacuum Rabi frequency becomes of the same
order of the bare frequency of the electronic excitations,

and the normalized coupling �
!12

is thus of order 1 [4–9]. As

in this regime the interaction energy is one of the dominant
energy scales of the problem, it becomes possible to obs-
erve fascinating new physical phenomena, ranging from
quantum vacuum radiation [10–12] to superradiant quan-
tum phase transitions (QPT) [13–19].

These systems are usually studied using the Dicke model
[3], describingN two level atoms identically coupled to the
electromagnetic field. This model is based on the assump-
tion that the interaction with the photonic field can only
induce transitions between levels in the same atom. No
transitions between different atoms are allowed. While this
assumption is well justified for dilute atomic clouds, this
may not be the case in solid state systems [6,7] or in
synthetic many-body systems [19–22], where the two level
systems can form, instead, two electronic bands. In this
case, each state of the lower band can be coupled, through
different photonic modes, to different final states in the
upper band.

The Dicke model can only give an approximate descrip-
tion of these band models, as it can be grasped by a simple
dimensional argument. The Hilbert space of N electrons
in a Dicke model has dimension dDM ¼ 2N (N two level
systems). For the same N, the electronic Hilbert space in a
band model, in which electrons can jump from any state
of the lower band to any state of the upper one, is instead
dFBM ¼ ð2NN Þ (N electrons spread over 2N possible states),

that tends to 4N=
ffiffiffiffiffiffiffiffi
�N

p
for large N. The physical Hilbert

space is therefore much larger than the one of the Dicke
model and, as we will see, this translates in a much richer
physics.
In this Letter, in order to investigate this new and com-

plex physics, we will study a model describing a multi-
mode bosonic field coupled to two flat electronic bands,
separated by a band gap !12. This particular choice is
motivated by the fact that flatband models, that can be
engineered using a number of different systems, from
two-dimensional electron gases [7,8] and graphene under
magnetic field [23,24] to atoms in optical lattices [20–22]
and topological insulators [25–28], are characterized by
density of states peaked around the band gap, leading to
the possibility to observe extremely large light-matter
couplings [7,8,23].
We will prove that, modifying the spectrum of the

bosonic field, it is possible to continuously tune the physics
from the usually expected Dicke model to an ultrastrongly
coupled quantum Rabi model [29–32]. Hence, the engi-
neering of the bosonic spectrum can allow us to simulate
different classes of superradiant models, with a dramatic
impact on the phase diagram.
We consider two flatbands of states with N modes each,

with the Fermi level in the band gap. The states in each
band are indexed by a general n-dimensional momentum
k, with k 2 ½�k0; k0�, and periodic boundary conditions.
Each state in the lower band c1;k is coupled to each state

of the upper band c2;k0 by the appropriate momentum-

conserving bosonic mode aq, with q ¼ k0 � k, through a

coupling constant � independent from q [see Fig. 1(a) for
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a schematic representation of the model]. Such a model is,
of course, an idealization, and the physics of a real imple-
mentation could be modified by the presence of cutoffs
and inhomogeneities, due to both the Fermi surface and
the wave vector dependence of the coupling constant. Still,
this idealized model allows us to show, in a clear and
paradigmatic way, how the presence of extra electronic
transitions, coupled to different modes of the bosonic field,
can profoundly modify the physics with respect to the well-
known Dicke model.

The Hamiltonian of the system, in momentum space,
thus reads

HFBM ¼X
q

!qa
y
qaqþ

X
k

!12c
y
2;kc2;k

þ �ffiffiffiffi
N

p X
k;q

ðcy2;kþqc1;kþcy1;kc2;k�qÞðay�qþaqÞ; (1)

where !q is the frequency of the mode aq, that we will

take to be isotropic, and we have set, here and in the rest of
this Letter, @ ¼ 1. As we have anticipated in the introduc-
tion, the behavior of the Hamiltonian in Eq. (1) is con-
trolled by the dispersion of the bosonic field !q. It is thus

practical to introduce three quantities describing its aver-
age �! ¼ 1

N

P
q!q, the energy of the lower lying mode

!m ¼ minq!q, and its half-width � ¼ �!�!m.

Defining the Fourier transform ~hr, of a quantity hq, as

hq ¼ 1ffiffiffi
N

p P
r
~hre

iqr (r is thus a point on an n-cubic lattice of

side 2�=k0), we can rewrite the Hamiltonian in Eq. (1) in
real space as

HFBM ¼ X
r

�! ~ayr ~ar þ!12~c
y
2;r~c2;r þ�ð~cy2;r~c1;r þ ~cy1;r~c2;rÞ

� ð~ayr þ ~arÞ þ
X
r0�r

~!jr�r0jffiffiffiffi
N

p ~ayr ~ar0 ; (2)

where we have exploited the fact that �! ¼ ~!0=
ffiffiffiffi
N

p
.

Restricting the Hilbert space to states in which only one
electron is present at each site r, we can map the matter
part at each site to a two level system. This is equivalent to
neglecting pairs of sites, one empty and one doubly occu-
pied, completely decoupled from the electromagnetic field.
This simplification can be justified a posteriori by the
fact that the energy of such a pair, !12, is much higher
than the energies we will find for two interacting, singly
occupied sites.
The Hamiltonian in Eq. (2) is reminiscent of a Rabi-

Hubbard model [33], describing a lattice of two level
systems, each coupled to a local bosonic mode of frequency
�!, with a superradiantly enhanced coupling strength �.
The main difference between our model and the Rabi-
Hubbard model described in Ref. [33] is that in Eq. (2)
the coupling between different sites is not limited to nearest
neighbors, but all the sites are coupled between them by
complex coupling constants. The coupling of two sites at
distance r is given by the r component of the Fourier
transform of the boson dispersion ~!r [see Fig. 1(b) for a
schematic representation of the model in real space].
For a flat bosonic dispersion, � ¼ 0, !q ¼ !m ¼ �!,

and the only nonvanishing Fourier component corresponds
to r ¼ 0. Different sites thus completely decouple, and in
this limit the Hamiltonian in Eq. (2) exactly maps on the
sum of N identical and decoupled quantum Rabi models

HQRM ¼ !m~a
y~aþ!12

2
�z þ��xð~ay þ ~aÞ; (3)

where �j, j 2 ½x; y; z� are Pauli matrices. Notice that in
Eq. (3), and in all the rest of this Letter, we discard the
constant terms from the Hamiltonian and neglect the site
index for fully local and site-independent Hamiltonians.
This exact mapping has two far-reaching consequences.

On one hand, even if Eq. (3) describes the physics of a
single two level system, the light-matter coupling is

enhanced by the superradiant factor
ffiffiffiffi
N

p
. Using flat bosonic

dispersions, like the ones that can be engineered with
photonic crystals, a flatband model can thus be used to
simulate an ultrastrongly coupled quantum Rabi model,
opening up the possibility to observe new physics, such as
quantum vacuum radiation [34] or the Bloch-Siegert shift
[35]. On the other hand, while the Dicke model presents a
phase transiton, when the coupling � exceeds a certain
critical value [3,13,14], the quantum Rabi model does not.
We thus proved that the Hamiltonian in Eq. (1) is not
always in the same universality class of the Dicke model.
In the nonflat dispersion case, however, the phase

transition can occur. In order to prove this explicitly, we

FIG. 1 (color online). (a) Sketch of the considered model with
flatbands in momentum space. N electrons can occupy two
parallel bands, with N states each, and each state in the first
band couples to every state of the second one through a different
bosonic mode, with a coupling constant �=

ffiffiffiffi
N

p
. (b) Real space

picture. Each state in the first band couples with only one state in
the second band, through a local bosonic field, with a coupling
strength�. The different local bosonic modes at sites r and r0 are
further coupled between them by the coupling constant ~!jr�r0j.
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will use a mean-field (MF) approach to study the full
Hamiltonian in Eq. (2). We shift the bosonic fields as

~ayr ¼ c r þ �y
r ; h~ayr i ¼ c r; h�y

r i ¼ 0; (4)

where the expectation value is taken over the ground state.
In order to decouple the different sites, we disregard the
coupling between fluctuations at different sites and obtain,
on each site r, the following Hamiltonian:

HMF
r ¼ �!�y

r�r þ!12

2
�z

r þ�ðc r þ c �
r þ �y

r þ �rÞ�x
r

þX
r0

~!jr�r0jffiffiffiffi
N

p ðc rc
�
r0 þ c r0�

y
r þ c �

r0�rÞ: (5)

We expect the previous mean-field Hamiltonian to
present a delocalized superradiant phase transition [33]
for large enough values of the intersite coupling. In order
to allow for the field to condense in any of the original q
modes, we chose the following inhomogeneous ansatz for
the mean-field parameter:

c q
r ¼ c

ffiffiffi
2

p
cosðqrÞ for q � 0

c q
r ¼ c for q ¼ 0;

(6)

with c real and the q-dependent normalization is needed
to have a continuous energy for the bosonic field
(that depends on the integral of c q

r over r).
Inserting the ansatz in Eq. (6) into Eq. (5), we obtain

HMF
r ¼ !qc

q2
r þ!12

2
�z

r þ 2�c r�
x
r þ �!�y

r�r

þ ð��x
r þ c q

r!qÞð�y
r þ �rÞ: (7)

In order to calculate the phase diagram of the system, we
have to find the values of c and q that minimize the ground
state energy of the total mean-field Hamiltonian HMF

FBM ¼P
rH

MF
r . As a first step, we notice that the Hamiltonian in

Eq. (7) is invariant over a contemporary sign exchange

of c q
r , �

x
r , and �y

r . The expectation value of an arbitrary
observable �r, over site r, can thus be written, close
enough to the transition to be able to keep only the lowest
order term in the order parameter, in the form

�r ¼ Aq þ Bqc
q2
r ; (8)

where Aq and Bq are independent of c
q
r (but they can still

depend upon q through!q). A homogeneous observable �

is equal to the average, over all sites r, of local observables
�r. From Eqs. (6) and (8), we thus have that

� ¼ Aq þ Bqc
2: (9)

For the sake of determining the phase boundary, we can
thus consider the homogeneous case, dropping the site
index. Moreover, if we calculate the ground state expecta-
tion value, we obtain from Eq. (4)

hHMFi ¼ !qc
2 þ

�
!12

2
�z þ 2�c�x

þ �!�y�þ��xð�y þ �Þ
�
: (10)

The first term in Eq. (10) is a strictly increasing function
of !q, while the others do not depend upon q. The system

will thus always condense in the lowest lying bosonic
mode and, from now on, we can take !q ¼ !m. We can

thus limit ourselves to study a single, site-independent
local Hamiltonian

HMF ¼ !mc
2 þ!12

2
�z þ 2�c�x þ �!�y�

þ ð��x þ c!mÞð�y þ �Þ: (11)

An analytic limit for the phase boundary can be obtained
for broad dispersions (such that the average energy mis-
match is much larger than the coupling, � � �). In this
limit, we see from the fourth term in Eq. (11) that the energy
cost of fluctuations increases, eventually completely freez-
ing them. It is thus possible to neglect quantum fluctuations
and consider only the coherent part of the field

lim
�!!1H

MF ¼ !mc
2 þ!12

2
�z þ 2�c�x: (12)

The previous Hamiltonian can be analytically diagonal-
ized, yielding an energy, close to the QPT boundary

E ¼ ð!m � 4�2

!12
Þc 2, leading to a second order QPT for

the critical value

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!m!12

p
2

; (13)

that is the critical value we expect from the Dicke model
[13,14]. This result justifies a posteriori the choice to
model flatband systems with steep enough bosonic

FIG. 2. Phase diagram of the considered flatband model at the
resonance !m ¼ !12, as a function of the normalized coupling
�=!12 and of the normalized half-width of the bosonic disper-
sion �=!12. We see how the normalized coupling at the critical
point is 0.5 in the limit of broad bands, as predicted by the Dicke
model, and diverges for flat optical dispersions, as the system
becomes well described by a quantum Rabi model.
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dispersions as Dicke models. In this case, all the bosonic
modes except the almost resonant one eventually become
completely nonresonant and can thus be neglected.

For intermediate values of �, we diagonalized HMF in a
truncated Fock space for different values of c , finding then
the value that minimizes the ground state energy [36,37].
In Fig. 2 we plot the phase diagram as a function of the

normalized coupling �
!12

and of the normalized half-width

of the bosonic dispersion �
!12

, for the resonant case !m ¼
!12. In the two limiting cases of �

!12
going toward zero and

infinity, we find results consistent with our previous ana-
lytical estimations: the critical point diverges toward infi-
nite values of the normalized coupling when the dispersion
is almost flat (consistently with the fact that the quantum
Rabi model does not present a critical point) or it converges
to 0.5, accordingly to Eq. (13), for very broad dispersions.

In Fig. 3 we show the average occupation of the excited

band, 1
N

P
khcy2;kc2;ki ¼ h�zi þ 1

2 , for the same parameters.

From the bottom panel of Fig. 3, the continuous transition
between the Dicke-like quantum phase transition for broad
dispersions (solid line) and the Rabi-like crossover (dotted
line) is evident.
In conclusion, we investigated the physics of a model

describing a multimode bosonic field coupled to two flat
electronic bands. We proved that, if the bosonic mode is
also dispersionless, the presented model maps exactly into
an ultrastrongly coupled quantum Rabi model, allowing
us to simulate such a model with controllable coupling
strengths. Using a mean-field theory, we showed that,
engineering the dispersion of the bosonic field, the physics
of such a model can be continuously tuned from a quantum
Rabi model (with no critical point) to a Dicke model
exhibiting a superradiant QPT.
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